

Hydrogen Materials Advanced Research Consortium (HyMARC): Sandia Technical Effort

Mark Allendorf (PI), Vitalie Stavila (Presenter), James White, Chun-Shang Wong, Andreas Schneemann, Annabelle Benin, Pavithra Wijeratne, Lennie Klebanoff, Robert Kolasinski, Farid El Gabaly, Catalin Spataru, Xiaowang Zhou

> Sandia National Laboratories, Livermore, CA, USA Annual Merit Review Meeting, Crystal City, VA – May 1, 2019

Enabling twice the energy density for hydrogen storage

Overview

Sandia

Timeline

Project start date: 09/17/2018

SNL R&D Budget

- FY18 Phase 1 Funding: \$895,000
- FY18 Phase 2 Funding: \$783,890
- FY19 Phase 2 Funding: \$450,000
- Total Phase 2 Funding: \$1,233,890

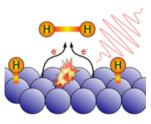
Barriers

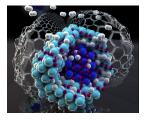
- Lack of Understanding of Hydrogen Physisorption and Chemisorption (Barrier O)
- System Weight & Volume (Barrier A)
- Cost, Efficiency, Durability (Barrier F)
- Charging/Discharging Rates (Barrier E)

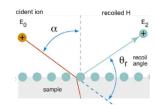
Identifying and addressing foundational knowledge gaps

- ⇒ Understanding the physical and chemical influences that can **improve thermodynamics of sorbents and complex metal hydrides**
- \Rightarrow Elucidated surface/interface phenomena in complex metal hydrides that impact H₂ storage
- \Rightarrow Identified species critical to hydrogen transport through surfaces and interfaces
- \Rightarrow Probed the underlying mechanisms for additive effects on kinetics

Discovery of new material concepts for hydrogen storage

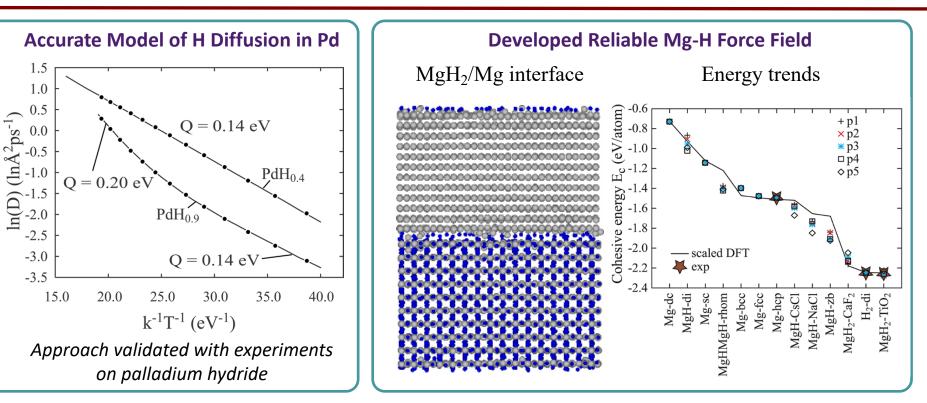

- ⇒ Mitigated intermediate formation in hydrogen storage reactions through doping and nanostructuring
- \Rightarrow Demonstrated molecularly dispersed metal borohydride species
- ⇒ Applied **SNL multiscale codes to discover new materials** and new mechanisms of storing hydrogen, provide input for database development
- \Rightarrow Developed catalysts for low-temperature, carbon-neutral hydrogen generation


Development of new capabilities

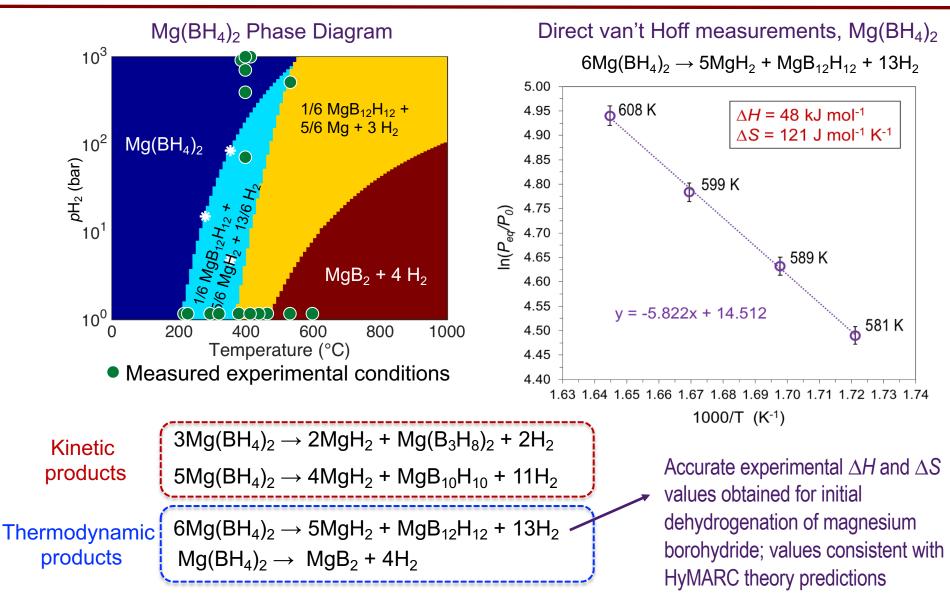

- \Rightarrow Developed techniques to **detect and monitor hydrogen on surfaces**
- \Rightarrow Coupled X-ray spectroscopy with spectral theory to **probe electronic structure**

Seedling interactions and validation

⇒ Collaborated with seedling projects to assess novel materials concepts for hydrogen storage



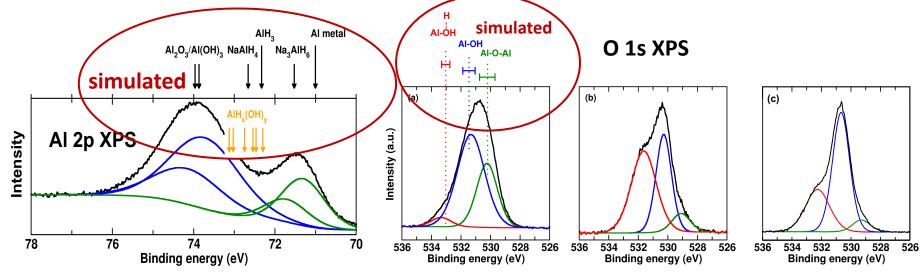
Phase 1 Accomplishments: Established MD modeling framework to predict hydrogen transport



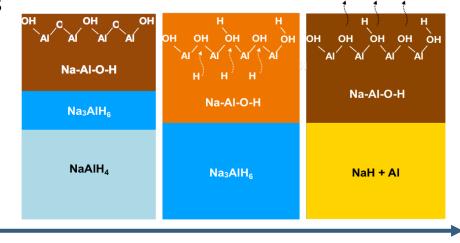
- H diffusion in Al: X.W. Zhou, F. El Gabaly, V. Stavila, M.D. Allendorf, J. Phys. Chem. C, 2016, 120, 7500.
- H diffusion in bulk Pd: X.W. Zhou, T.W. Heo, B.C. Wood, V. Stavila, S. Kang, M.D. Allendorf, *Scripta Mater*, **2018**, *149*, 103.
- PdH_x bulk: X.W. Zhou, T.W. Heo, B.C. Wood, V. Stavila, S. Kang, M.D. Allendorf, *MRS Adv.*, **2017**, *2*, 3341;

X.W. Zhou, T.W. Heo, B.C. Wood, V. Stavila, S. Kang, M.D. Allendorf, J. Appl. Phys., 2018, 123, 225105.

- Mg-H force field: X.W. Zhou, S. Kang, T.W. Heo, B.C. Wood, V. Stavila, M.D. Allendorf, ChemPhysChem, 2019, 20, 1.
- ⇒ Sandia Molecular Dynamics modeling tools provide activation barriers and pathways as input to kinetic hydrogen transport models developed at LLNL.


Phase 1 Accomplishments: Experimental/theory phase diagram for bulk Mg(BH₄)₂

MAR


Phase 1 Accomplishments: NaAlH₄ surface chemistry understood using tools that probe surface composition

Novel approach mixes ab-initio MD with XPS simulations via LLNL/LBNL collaboration to interpret SNL AP-XPS and obtain a reliable picture of how surface chemistry evolves

H₂ formation

- Simulated XPS spectra show that past work has incorrectly assigned chemical species, which do not always follow formal oxidation state!
- Near-surface region chemistry involves oxide film on Na₃AlH₆, which evolves as hydrogen enriches and then depletes during dehydrogenation
- Surface hydroxides serve as low-barrier sites for H-H combination and H₂ release

Reaction progress

The Sandia HyMARC team assists the H₂ storage community with:

- \Rightarrow Technical expertise concerning specific scientific problems
- \Rightarrow Provides well-characterized sorbents and hydrides for joint studies
- \Rightarrow Access to HyMARC modeling and experimental capabilities

As of 03/31/2019, Sandia has performed high-pressure hydrogenations on ≈ 110 samples from the US and international collaborators

Sandia is providing support to seedling projects:

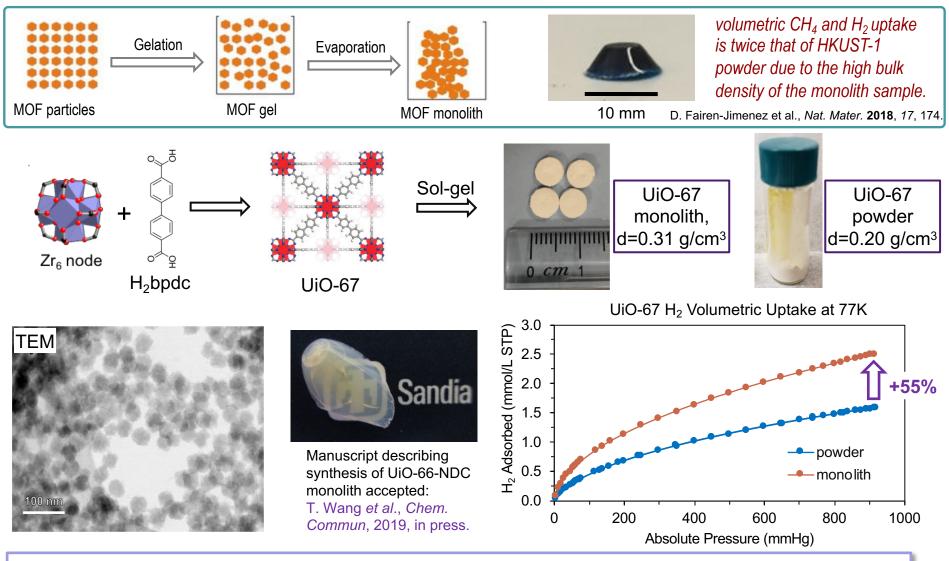
- Development of Magnesium Boride Etherates as Hydrogen Storage Materials (U. Hawaii)
 - Explored jointly instability in MgB₂ boron sheets
 - High-pressure hydrogenation, XRD, and FTIR performed for > 60 samples
 - Joint paper accepted in ChemPhysChem
- *Electrolyte-Assisted Hydrogen Storage Reactions* (LiOx Power and HRL Labs)
 - High-P experiments and sample characterization
 - Joint paper on eutectics published in J. Phys. Chem. C
- Atomic-Layer Deposition Synthesis of Nanostructured Metal Borohydrides (NREL)
 - Mg(BH₄)₂ nanoparticle samples sent to NREL for ALD coating
- Optimized Hydrogen Adsorbents via Machine Learning & Crystal Engineering (U. Mich.)
 - Crystal engineering of Open Metal Sites in Metal-Organic Frameworks

MĀNOA

Task 1-Sorbents:

- 1.C Optimizing Sorbent Packing
- 1.F Nanoscale Defects in Sorbents (to begin in FY20)

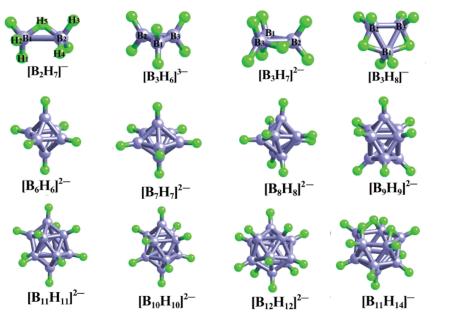
Task 2-Metal Hydrides:


- 2.A Thermodynamics of Hydrogen Storage Reactions
- 2.B Solid Interfaces and Surfaces
- 2.C Activation of Bonds in Hydride Materials to Improve Kinetics (e.g., B-B, B-H)
- 2.D Nanoscaling to Improve Thermodynamics and Kinetics
- 2.E Microstructural Impacts of Complex Metal Hydride Reactions
- 2.F Machine Learning and Data Science

Task 3-Hydrogen Carriers:

- 3.B Aqueous Organic Carriers
- 3.C Eutectic Systems as Hydrogen Carriers

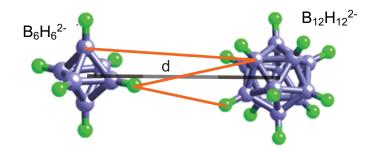
Sorbents: 1.C. Optimizing sorbent packing Synthesis of high-density MOF monoliths



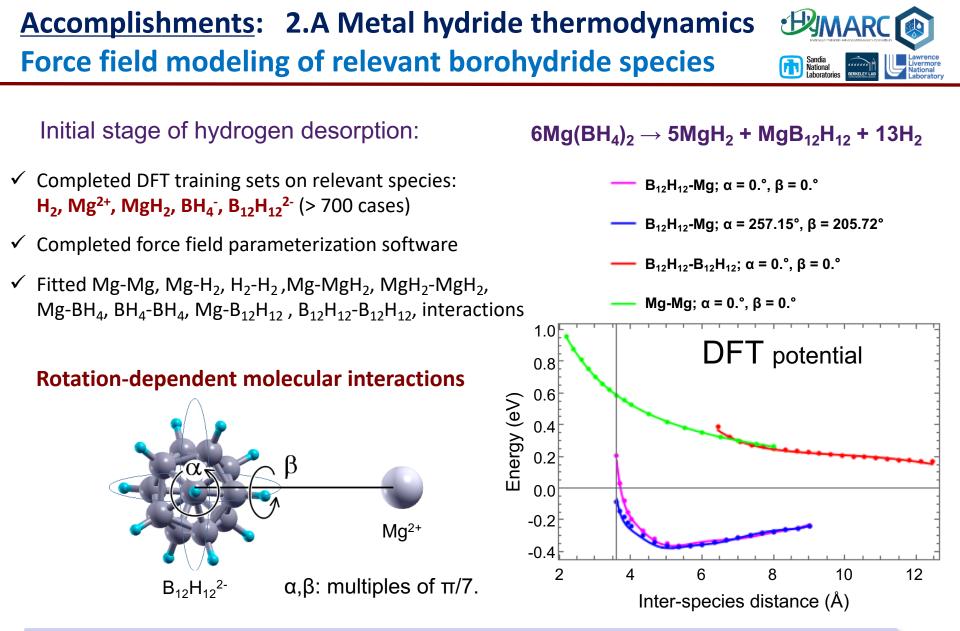
- \Rightarrow Used established methodology to synthesize UiO-66-NDC and UiO-67 monoliths
- \Rightarrow Found >50% increase in volumetric H₂ uptake in monolith compared to UiO-67 powder

<u>Approach</u>: Molecular dynamics simulations of hydride multicomponent systems

Arachno- , Nido- and Closo-Borates

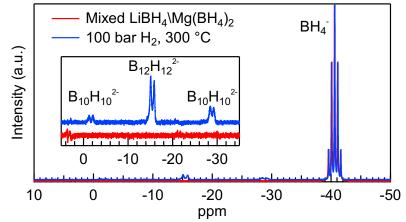

Overcoming the complexity arising from dynamic behavior of a large number of interacting molecules and species.

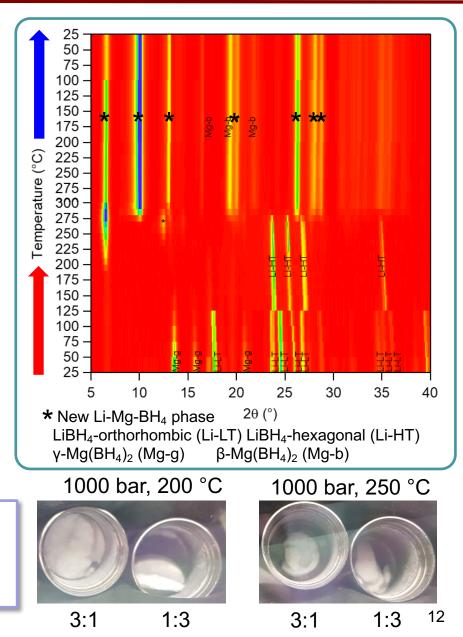
- Too many atoms for ab-initio DFT calculations.
- Use DFT to develop accurate intermolecular potentials.
- Then, use MD to predict phase interaction energies.


DFT derived potentials

- Predict interaction energies between reactants and newly formed products
- The MD simulations capture the molecular nature of the solids involved
- In molecular dynamics simulations, species are distinguished by combination of molecules and atoms, not just atoms

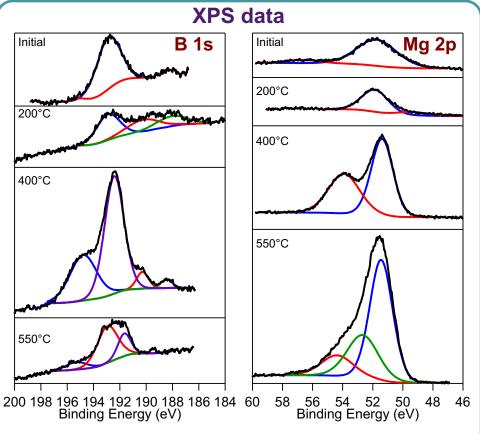
Capture molecular and ionic forces

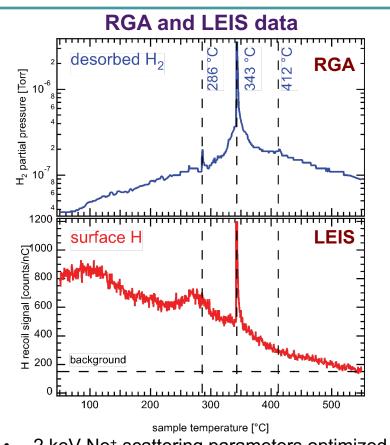

⇒ The objective is to develop accurate phase energetics and pathways to predict the thermodynamics and kinetics of multicomponent hydrogen storage reactions.


⇒ The predicted DFT potentials will allow MD simulations of the thermodynamics and kinetics of multicomponent boron-based hydrogen storage materials.

Accomplishments: 2.A. Metal hydride thermodynamics

- Investigated eutectic melting of varying ratios of LiBH₄ (m.p.=280 °C) and Mg(BH₄)₂ (m.p.=360 °C)
- Induce melting at high H₂ pressure (1000 bar) to suppress dehydrogenation reaction
- VTXRD at 10 bar H₂ reveals a new phase in both
 3:1 and 1:3 (Li:Mg) mixtures
- $\circ~^{11}B$ NMR results show that stable intermediates $[B_{10}H_{10}]^{2\text{-}}$ and $[B_{12}H_{12}]^{2\text{-}}$ form in LiBH₄-Mg(BH₄)₂ eutectics even under 100 bar H₂ backpressure


⇒ Created an unexpected new crystal phase under the conditions thought to generate a Li-Mg borohydride eutectic.


Accomplishments: 2.B Solid Interfaces and Surfaces

In situ surface characterization of Mg(BH₄)₂

- Concentration of boron species elevated at near peak desorption
- Magnesium segregates to surface implications for reversibility upon full desorption

- 2 keV Ne⁺ scattering parameters optimized for H detection (less sensitive for O, B)
- H, Mg, and 2 background channels monitored to provide absolute peak height
- \Rightarrow Demonstrated that XPS, LEIS, and RGA can track hydrogen transport to the surface and subsequent desorption during Mg(BH₄)₂ dehydrogenation reaction


14

<u>Accomplishments</u>: 2.C Activation of bonds in hydrides Combining XAS and TEM to understand additive reactions

TiF₃ is a promising additive for metal borohydrides, yet its role in hydrogenation of MgB₂ is unknown. We found that in the \approx 5mol%TiF₃/MgB₂ additive system TiF₃ fully reacts with MgB₂:

 \Rightarrow XAS reveals the formation of MgF₂ and metallic Ti with no evidence of titanium boride.

⇒ TEM shows that Ti and F are spread throughout the MgB₂ material. The fluorine is generally spatially associated with the titanium species.

В

Mg

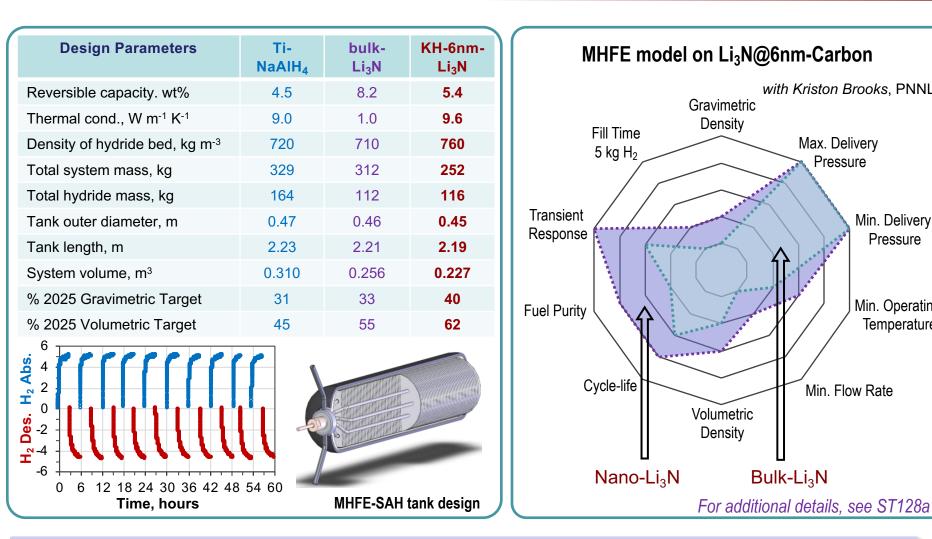
Accomplishments: 2.D Nanoscale Metal Hydrides Engineering requirements for nanoscale hydrides

with Kriston Brooks, PNNL

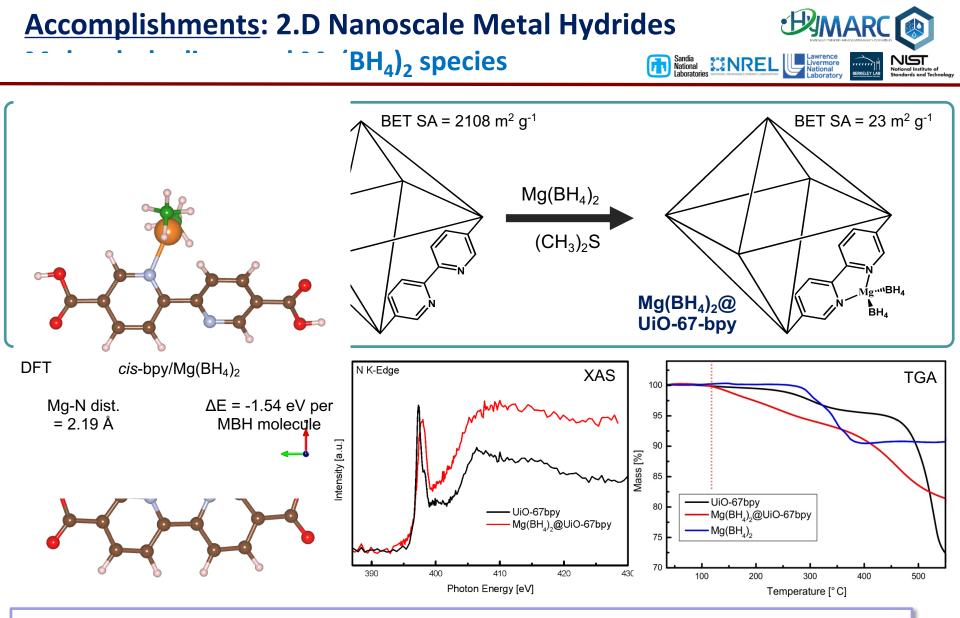
Max. Delivery

Pressure

Min. Flow Rate

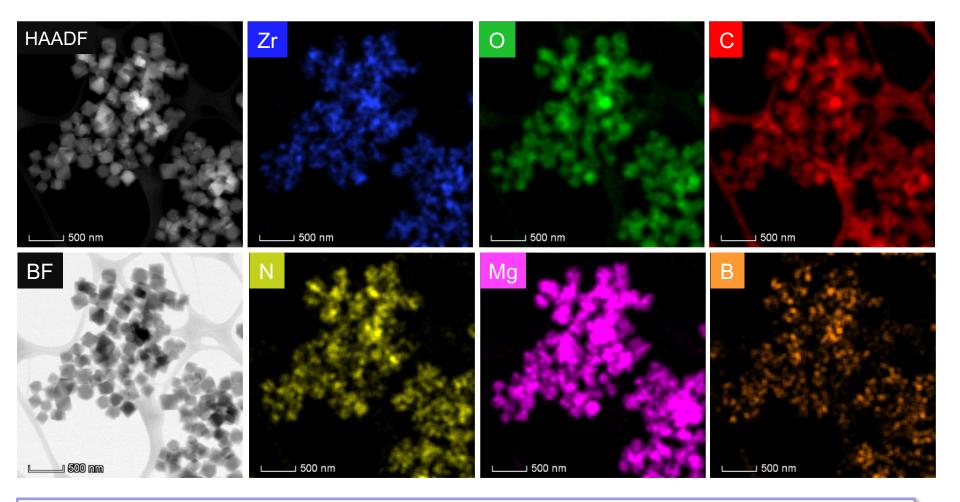

Bulk-Li₃N

Min. Delivery


Pressure

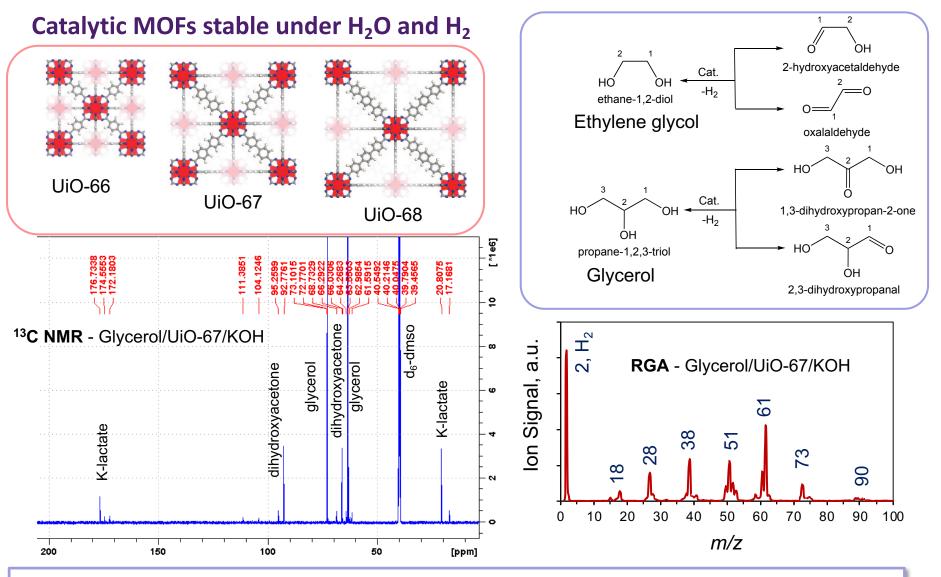
Min. Operating

Temperature


 \Rightarrow Used HSCOE Metal Hydride Finite Element model to reveal non-intuitive tradeoffs and benefits of using nanoscale metal hydrides in an operational H₂ storage tank

⇒ XAS measurements and computational spectroscopy reveal that Mg(BH₄)₂@UiO-67-bpy is composed of molecular Mg(BH₄)₂ species coordinated to bipyridine groups
 ⇒ Hydrogen release starts as low as 120 °C, >100 °C lower than bulk.

<u>Accomplishments</u>: 2.D Nanoscale Metal Hydrides Aberration–corrected TEM on Mg(BH₄)₂@UiO-67bpy



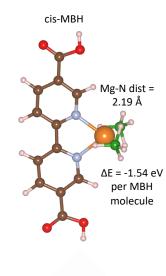
⇒ Aberration-corrected TEM/EDS measurements (Titan AC-STEM) reveal that both Mg and B atoms are homogeneously distributed within the UiO-67-bpy crystals, suggesting Mg(BH₄)₂ exists as molecular species within the MOF pores

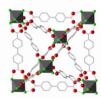
Accomplishments: 3.B Aqueous organic carriers Catalytic H₂ production from polyalcohols

⇒ Demonstrated MOF-catalyzed hydrogen production from ethylene glycol and glycerol.

Sorbents

- Developed synthetic routes to monoliths of several Zr-based MOFs, including UiO-66-1,4-NDC, UiO-67, and NU-1000.
- Demonstrated a ≈55% higher volumetric hydrogen uptake in UiO-67 monolith compared to the powder version of this material.


Metal Hydrides


- Established a molecular dynamics modeling framework to provide the fundamental basis for theory predictions of energetics and kinetics of hydrogen storage reactions.
- Established in situ XPS and LEIS techniques to track hydrogen transport to the surface and subsequent desorption, using Mg(BH₄)₂ as an example.
- Established a theory-experimental framework for understanding how additive species react with MgB₂ and how the B-B bonding is disrupted.
- Used HSECoE models to determine the benefits of using nanoconfined metal hydrides (*e.g.* nano-Li₃N) in an operational hydrogen storage tank.
- First synthesis of molecularly dispersed Mg(BH₄)₂ within the pores of a non-innocent functionalized MOF.

Hydrogen Carriers

– Demonstrated a catalytic acceleration of hydrogen production from polyols.

Future Work

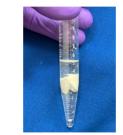
Sorbents

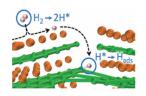
- <u>Establish new methods for powder compaction</u>, including MOF gel and monolith formation
- Probe the effect of structural defects on H₂ storage properties of MOFs.

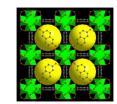
Hydrides

- <u>Activation of B-B and B-H bonds</u>: *Test the performance of additives predicted by theory to be efficient in activating B-B and B-H bonds*.
- Investigate hydrogen storage properties of molecularly dispersed Mg(BH₄)₂ and expand the methodology to other complex metal hydrides
- <u>Reversible capacity (milestone)</u>: <u>Demonstrate >6% reversible capacity</u> for at least one Li-N-H or Mg-N-H phase, based on predicted composition from phase diagram, with reasonable kinetics at a temperature of ≤ 300 °C.

Carriers


• <u>Carrier material approaches</u>: Establish catalytic processes for reversible hydrogen generation from alcohols and polyols.


Advanced characterization


 <u>Test and validate newly installed PCTPro system at Sandia</u> for temperatures of up to 450 °C and pressures of up to 100 bar H₂.

Seedling interactions

• Provide support to current and future HyMARC seedling projects.

We are grateful for the financial support of EERE/Fuel Cell Technologies Office and for guidance from Dr. Ned Stetson, Jesse Adams, Zeric Hulvey, TechTeam and AMR Reviewers

Enabling twice the energy density for hydrogen storage

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-NA-0003525.

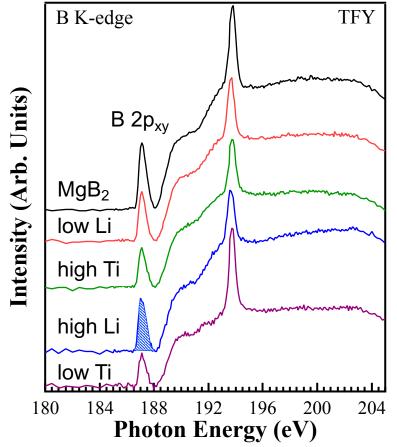
Technical Back-Up Slides

<u>Approach</u>: 2.F Development of machine-learning for discovery of new metal hydrides

- Team: Sandia (lead), LLNL
- Objective: develop a new HyMARC capability to efficiently search for the promising metal hydrides to complement an ongoing seedling effort (U. Michigan; Siegel)
- Strategy: apply Sandia's new "Explainable Machine Learning" tool to identify relationships between material features and observables such as plateau pressure
- Status: new postdoc hired (UC Berkeley); will start in June 2019

ASM Alloy Phase Diagram Database

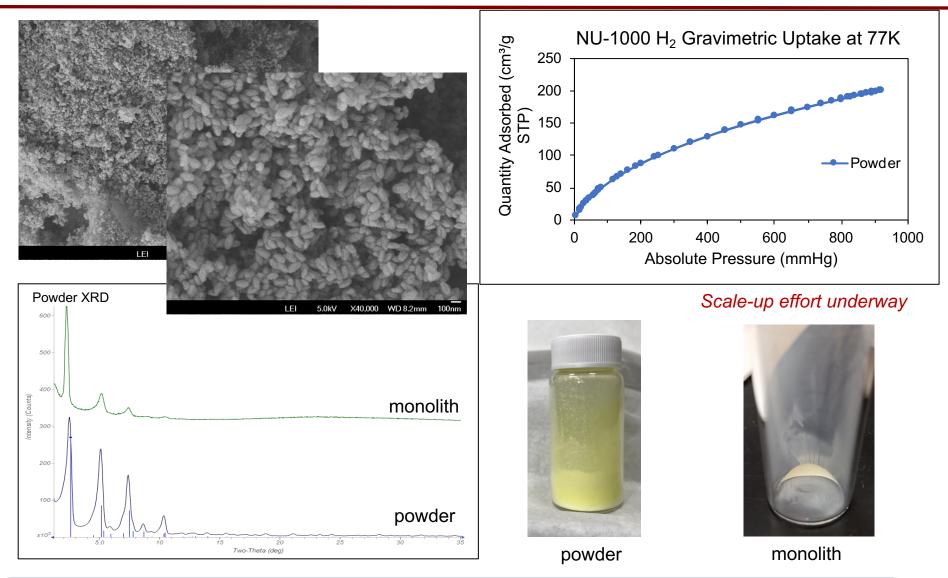
Explainable Machine Learning Framework



Accomplishments: 2.C Activation of bonds in hydrides Does disrupting the B-B ring promote MgB₂ hydrogenation? Sandia National Laboratorie

We previously showed that H-H bond breaking does not limit the rate of MgB₂ hydrogenation. New evidence suggests that it is necessary to disrupt B-B ring in MgB₂ to achieve faster hydrogenation.

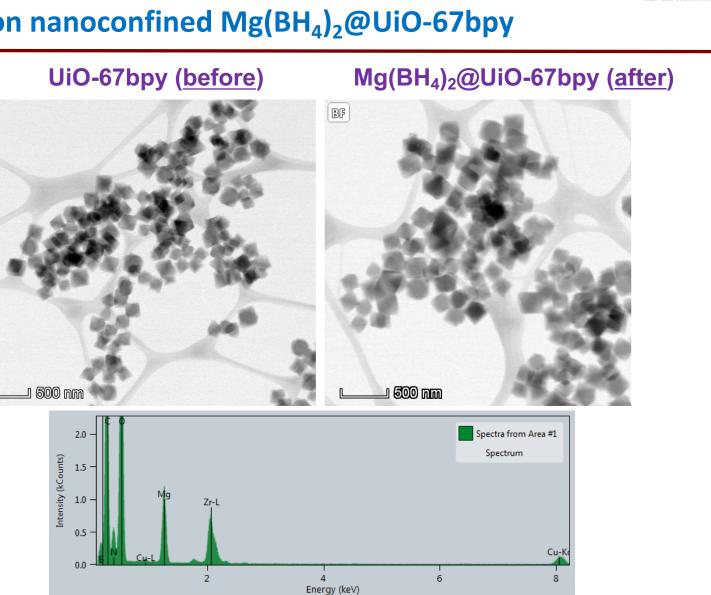
"low" = 0.25 mole fraction; "high" = 0.47 mole fraction


Sample	Integrated B 2p _{xy} Area
MgB ₂	0.44
MgB ₂ + low Li	0.31
MgB ₂ + high Li	0.36
MgB ₂ + low Ti	0.20
MgB ₂ + high Ti	0.25

Both Li and Ti additives reduce the B-B ring signal, but Ti disrupts it more, as predicted by LLNL theory.

Next Steps: Sieverts H₂ uptake measurements to see if B-B bond disruption leads to faster hydrogenation of the MgB₂ sample.

 \Rightarrow Our data indicate that the B-B ring structure can be disrupted through the use of additives, possibly promoting hydrogenation of MgB₂ to magnesium borohydride.


<u>Accomplishments</u>: 1.C. Optimizing sorbent packing Synthesis of NU-1000 monoliths

 \Rightarrow Successfully synthesized NU-1000 monolith composed of 100-200 nm particles

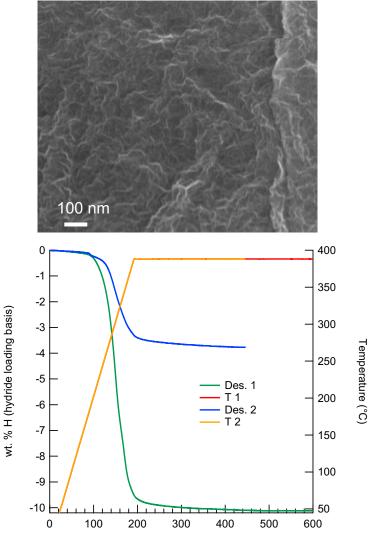
<u>Accomplishments</u>: 2.D Nanoscale Metal Hydrides TEM/EDS on nanoconfined Mg(BH₄)₂@UiO-67bpy

BF

 \Rightarrow Morphology of Mg(BH₄)₂@UiO-67bpy particles is preserved upon nanoconfinement

<u>Accomplishments</u>: 2.D Nanoscale Metal Hydrides Mg(BH₄)₂ nanoconfinement in porous hosts

 Mg(BH₄)₂ found to melt stably (without decomposition) at ~367 °C with high H₂ backpressures (>350 bar)



Resolidified Mg(BH₄)₂ after 1000 bar, 367 °C

- Use this new knowledge to melt-infiltrate porous carbons, both graphene aerogels and templated carbons (CMK-3, CMK-8)
- Capacity drops by 60% after rehydrogenation at 120 bar H₂

SEM of Infiltrated Graphene Aerogel

BMARC

Time (min)

Accomplishments: 1.B. Sorbent binding energies MOF stability under high-pressure hydrogen

MOF	Metal Ion	Initial BET S.A. (m ² /g)	Initial pore volume (cm ³ /g)	Post-testing pore volume (% change)	
				0.5 to 10 MPa H ₂ , 1000 cycles	70 MPa H _{2,} 1 cycle
MOF-5	Zn(II)	3320	1.387	1.388 (0%)	1.385 (0%)
MOF-177	Zn(II)	4490	1.958	1.954 (0%)	1.912(-2%)
HKUST-1	Cu(II)	1700	0.712	0.697 (-2%)	0.712 (0%)
NOTT-100	Cu(II)	1250	0.609	0.574 (-6%)	0.603(-1%)
Mg-IRMOF-74-I	Mg(II)	1430	0.573	0.570 (0%)	0.583(+2%)
Mg-IRMOF-74-II	Mg(II)	2280	1.027	0.910 (-11%)	1.044(+2%)
Ni ₂ (m-dobdc)	Ni(II)	1090	0.542	0.527 (-3%)	0.531(-2%)
Ni-IRMOF-74-I	Ni(II)	1200	0.510	0.430 (-16%)	0.462 (-10%)
Ni-IRMOF-74-II	Ni(II)	1520	0.651	0.640 (-2%)	Not tested
Ni-IRMOF-74-III	Ni(II)	1925	0.924	0.927 (0%)	Not tested
Ni-IRMOF-74-IV	Ni(II)	1460	0.956	0.997 (+4%)	Not tested
Ni-IRMOF-74-V	Ni(II)	1505	1.195	1.217 (+2%)	Not tested

⇒ Stability of a wide range of MOFs under hydrogen was tested; results confirm that most MOFs are stable under both 5 to 100 bar H_2 cycling conditions and under 700 bar H_2

Reviewer-Only Slides

Collaboration and Coordination

- T. Udovic and C. Brown (NIST): neutron diffraction/spectroscopy
 Exchanged 8 samples for neutron diffraction and NVS studies
- M. Toney, K. Stone, N. Strange (SLAC): synchrotron XRD and SAXS
 - Measured XRD and SAXS for 15 samples of bulk and nanoscale metal hydrides

- > T. Autrey and M. Bowden (PNNL): NMR on metal borohydrides and intermediates
- K. Hurst, P. Parilla and T. Gennett (NREL): Validation of MOF H₂ adsorption isotherms
- > Timmy Ramirez and David Cullen (ORNL): inelastic neutron scattering, neutron diffraction
- Stephen FitzGerald (Oberlin College): hydrogen binding in MOFs
- Viktor Balema, Vitalij Pecharskij (AMES Lab): metal hydrides, mechanochemistry
- > Dhanesh Chandra (University of Nevada, Reno): CALPHAD calculations and phase diagrams
- Martin Dornheim (Helmholtz-Zentrum Hamburg, Germany): high-pressure calorimetry
- > Torben Jensen (Aarhus University, Denmark): reversibility aspects of metal hydrides
- Shin-ichi Orimo (Tohoku University, Japan): transport in metal *closo*-borates
- > Ping Chen (Dalian University, China): characterization of ternary metal amides
- Stefan Kaskel (Technische Universität Dresden, Germany): high-surface area MOFs
- > David Fairen-Jimenez (University of Cambridge, UK): synthesis of MOF monoliths
- Hexiang Deng (Wuhan University, China): MOF stability under hydrogen
- Eun Seon Cho (KAIST, South Korea): strain-induced destabilization of metal hydrides

Patents:

- 1. V. Stavila, L.E. Klebanoff, "Nanostructured Metal Amides and Nitrides for Hydrogen Storage" US Patent #10000377 granted on 06/19/2018.
- 2. V. Stavila, J.L. White, "Solid state synthesis of metal borohydrides", US Patent Application #16/000,683 filed on 08/05/2018.

Selected Papers (from a total of 15 papers co-authored by the Sandia team over the past 12 months): 1. Schneemann, A.; White, J.L.; et al. "Nanostructured Metal Hydrides for Hydrogen Storage." Chemical Reviews, 2018, 118, 10775-10839. (cover article).

- 2. Allendorf, M.D.; *et al.* "An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage", *Energy Environ. Sci.*, **2018**, *11*, 2784-2812. (*hot article*).
- 3. White, J.L.; *et al.* "Promotion of Dehydrogenation of Ti-Doped NaAlH₄ by Dynamic Surface Hydroxides." *ACS Appl. Mater. Interfaces.*, **2019**, *11*, 4930-4941.
- 4. Jensen, S.; *et al.* "Hydrogenation properties of lithium and sodium hydride *closo*-borate, $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$, composites." *Phys. Chem. Chem. Phys.*, **2018**, *20*, 16266-16275 (*jointly with Aarhus U., Denmark*). 5. Carr, C.; *et al.* "Anomalous H₂ Desorption Rate of NaAlH₄ Confined in Nitrogen-Doped Nanoporous Carbon Frameworks." *Chem. Mater.*, **2018**, *30*, 2930-2938. (*collaboration with Seedling project*).
- 6. Vajo, J.J.; *et al.* "Electrolyte-Assisted Hydrogen Storage Reactions." *J. Phys. Chem. C*, **2018**, *122*, 26845. (*collaboration with Seedling project*).
- 7. Liu, Y. -S.; *et al.* "In-situ/operando X-ray characterization of metal hydrides," accepted for publication in *ChemPhysChem*, Feb. 7, **2019**. DOI:10.1002/cphc.201801185R1.
- 8. Zhou, X. W.; *et al.* "An Analytical Bond Order Potential for Mg-H Systems," accepted for publication in *ChemPhysChem* Jan. 12, **2019**, DOI:10.1002/cphc.201800991R1.

Presentations:

14 presentations (1 keynote and 6 invited) at national and International conferences and symposia.

Sandia National Natio

HyMARC FY17/Q2 Go/No-go Milestone Rank improvement strategies for sorbents. Decision criterion: select 2 with greatest potential for increasing ΔH° . Top strategies:

- Open metal sites in MOFs
- Lewis acid/Lewis-base sites

Energy & Environ. Sci. 2018, 11, 2784 "An Assessment of Strategies for the Development of Solid-State Adsorbents for Vehicular Hydrogen Storage" (Hot Article) Topics include:

- Usable gravimetric and volumetric capacities
- The importance of binding strength
- Theoretical calculations of H₂ physisorption
- Considerations for adsorbent synthesis and characterization
- Revisiting the 2010 HSCoE final report
- Perspectives on current material strategies

HyMARC FY18/Q4 Go/No-go Milestone

Rank improvement strategies for hydrides. Decision criterion: select 2 with greatest potential for reducing effective ΔH

(article addresses a major strategy considered in the Go/No-go)

Chem. Rev. 2018, 22, 10775 "Nanostructured Metal Hydrides for Hydrogen Storage" (Journal Cover)

Topics include:

- Classes of nanostructured metal hydrides
- Synthesis routes
- Structure
- Morphology
- Thermodynamics
- Kinetics
- Mechanistic effects
- Future directions in nanohydride research

- Assume that theory is sufficiently validated to allow *de novo* predictions of additive promotion of hydrogen storage reactions
 - Will further test and validate the theory in the additive space by performing hydrogen uptake and release experiments for promising additives
- Assume that the models for predicting phase diagrams for model metal borohydrides will be transferable other borohydride-based systems
 - Will perform DFT and ab initio MD computations to correlate the results
 - Will perform experiments to validate theory models
- Capability of monitoring the surfaces and interfaces *in situ* during hydrogen release and absorption
 - Multiple characterization techniques (spectroscopy, scattering, electron microscopy) will be used to correlate the results and determine mechanisms and hydrogen diffusion pathways

- All unrestricted data will be preserved long-term on HyMARC Data Hub (datahub.hymarc.org)
 - Archivable experimental characterization data will include reference NMR, XAS/XES, XRD, FTIR, NVS
 - Archivable experimental testing data will include Sieverts isotherm and PCT data
 - Computational data will include reference free energies of bulk compounds, surface energies, elastic tensors, and vacancy formation energies
 - Also plan to archive raw ab initio molecular dynamics trajectory data
 - Data hub has password-protected data sandboxing for public access or for private internal (HyMARC-only) access
 - Data hosted physically on NREL server
 - Partner data will be restricted to HyMARC team access prior to publication
- Publications are uploaded to OSTI archive with digitally accessible link

Responses to Reviewer Comments

- Do the conclusions for the surface oxidation of NaAlH₄ necessarily extend to other complex metal hydrides (for example Mg(BH₄)₂)?
 - The generality of the conclusion that surface oxidation promotes hydrogen desorption, as seen in NaAlH₄, is currently under investigation. We have observed surface oxides and hydroxides in the Mg(BH₄)/MgB₂ system, and are currently exploring their roles.
- There should be a focus on multicomponent composite systems with high capacities.
 - In Phase 2 of HyMARC, we initiated a new direction to explore multicomponent materials, including mixed metal borohydrides, borohydride-amide materials, and multicomponent eutectics, in collaboration with the HRL/Liox seedling project.
- The research team needs to include a pipeline for materials that is more likely to achieve technical targets.
 - HyMARC probes the fundamental limitations to hydrogen storage materials, but we do so with high-capacity families of materials, such as MOFs with open metal sites, metal borohydrides, metal amides, etc. We also assist the seedling projects who are focused on specific high—capacity materials with prospects for meeting the technical targets.
- The project needs to develop a list of priorities and provide a strong technical rationale for ranking of such priorities.
 - The priorities for Phase 2 of HyMARC have been developed as a result of guidance from DOE, TechTeam and AMR Reviews. Those priorities, as reflected in the Phase 2 Focus Areas, address the most important materials problems inhibiting H₂ storage materials performance.