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Barriers addressed
– Volumetric Density
– Gravimetric Density

Project Start Date: Sept. 1st, 2017
Project End Date: Dec. 31st, 2020

Total Project Budget: $1,047,000
Federal Share:

UM: $807,000
Ford: $192,000
Total: $999,000

$250,000 (Y1)
$398,000 (Y2)
$351,000 (Y3)

Cost Share: $48,000 (Ford)

Total Funds Spent:* ~$300,000

*Estimated as of 3/30/19

Timeline and Budget Barriers

Interactions/collaborations: 
Ford Motor Company, Hydrogen 
Storage Engineering Center of 
Excellence (HSECoE)

Project lead: 
Don Siegel, University of Michigan

Partners

Overview



• A high-capacity, low-cost method for storing hydrogen remains one of the 
primary barriers to the widespread commercialization of fuel cell vehicles 

• Storage via adsorption in MOFs is promising due to their fast kinetics, 
reversibility, and tunable properties

• A viable adsorbent must exhibit a high intrinsic (i.e., materials level) H2
capacity, and pack in a dense fashion at the system level
– Our prior screening revealed that no known MOF exhibits a usable volumetric capacity 

exceeding 40 g H2/L (assuming a pressure swing between 100 and 5 bar at 77 K)

– Analysis by the HSECoE has shown that inefficient materials packing can result in 
capacity reductions of more than 60% compared to the single-crystal level. These 
inefficiencies can negate improvements in volumetric performance achieved at the 
materials level

– This project addresses both of these challenges

Project goal: Overcome volumetric limitations associated with 
physisorptive hydrogen storage at both the materials and 

systems level in metal-organic frameworks (MOFs)
3

Background (1)
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Relevance (1)
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Screening of ~500,000 MOFs reveals that essentially no compounds exceed 
40 g/L usable capacity 

à New MOFs needed to break through volumetric ceiling
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Relevance (2)
Packing inefficiencies result in significant volumetric penalties in 

adsorptive hydrogen storage systems 
à Increase packing density via crystal engineering

Data courtesy of Justin Purewal, Ford Motor Company



Objective 1: Apply machine learning techniques to identify, 
design, and demonstrate high-capacity MOFs 

– Demonstrate usable volumetric capacities exceeding 50 H2 g/L 
(single-crystal/pressure swing) 

– No compromise to gravimetric capacity, kinetic performance, or 
reversibility

– If successful, these compounds will set a new high-water mark for H2 
density in adsorbents at cryogenic conditions

Objective 2: Control MOF crystal morphology and crystallite 
size distribution to increase packing density 

– Increase packing density of target high capacity MOF by at least 30% 
(compared to its powder tap density)

– Do so with less than 15% decrease in gravimetric performance

6

Relevance (3)
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Milestones

Milestone Summary Table
Recipient Name: University of Michigan (PI: Siegel)

Project Title: Optimized Hydrogen Adsorbents via Machine Learning and Crystal Engineering
Task 
No. Task Title Milestone 

Type Milestone Description Milestone Verification 
Process

Due Date
(Month) Status

1.0 MOF Discovery Guided by Machine Learning (ML)

1.1 MOF performance from 
scratch Milestone Demonstrate ability to predict usable capacity of an arbitrary MOF 

to within 85% of GCMC capacity using only crystal structure as input

Comparison of machine 
learning prediction with 

GCMC calculation
3 Complete

1.2 Structure-performance 
correlations Milestone Correlate MOF geometric properties with capacity

Random forest or SVM 
analysis analysis of MOF 

properties
6 Complete

1.3 MOF reverse engineering Go/No-Go

Identify ranges for 4 MOF crystallographic properties (surface area,
density, pore volume, & porosity) consistent with usable volumetric
capacity of at least 40 g/L and usable gravimetric capacity of at least
7 wt. % (assuming an isothermal pressure swing between 100 and 5 
bar at 77 K) based on single crystal density. Demonstrate that the 

identified ranges are within the realm of possibility for the 
development of new MOFs, and thus provide a pathway for 

meeting the DOE storage targets.

Random forest or SVM 
analysis of MOF properties 

and direct GCMC simulation
12 Passed

1.4 Data Dissemination Milestone Make list of structures available to HyMARC team and to general 
public via web download.

Data access confirmed by 
HyMARC partners 18 Complete

1.5 Validate ML predictions Milestone

Use GCMC to validate ML predictions of highest capacity MOFs on a 
pressure swing and temperature+pressure swing basis. Attempt to 

synthesize 1-2 of the most promising MOF candidates. Assess 
surface areas; if within 85% of theoretical value perform PCT 

capacity measurements

GCMC calculations, BET 
surface area measurements, 

and PCT measurements
21

Complete.
(Additional 

experiments on-going)

2.0 Enhanced MOF Packing Density via Crystal Engineering

2.1 Morphological engineering Milestone Identify at least 2 additives capable of controlling morphology from 
cubes to octahedra

Optical microscopy or SEM 
measurements 9 Complete

2.1 Morphological engineering Go/No-Go

Demonstrate an improvement in either A) a MOF with a single 
crystal volumetric capacity greater than 39 g/L usable capacity 

measured at 77 K, and 5-100 bar pressure (i.e., a 10% increase over 
the current state-of-the-art NU-100) through Machine Learning-

directed material development, OR B) a 15% increase in tap density 
through crystal engineering methods for a specific MOF compared 
to its non-optimized powder, with a minimal loss in surface area.

Density measurements, 
surface area measurements, 

PCT measurements
24 In progress

2.2 Particle size control Milestone
Determine if particle size influences packing efficiency by more than 

10% for particles whose size varies by more than an order of 
magnitude

Void fraction measurements 15 Complete

Project has met all milestones through Q7
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Approach
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MOF Database

Source Available in 
database

Zero surface 
area

H2 capacity 
evaluated empirically

H2 capacity evaluated 
with GCMC

UM+CoRE+CSD17 (RM) 15,235 2,950 12,285 12,799

Mail-Order MOFs (MO) 112 4 108 112

In Silico MOFs (IS) 2,816 154 2,662 466

In Silico Surface MOFs (ISS) 8, 885 283 8,602 1,058

MOF-74 Analogs (M74) 61 0 61 61

ToBaCCo (TB) 13,512 214 13,298 2,854

Zr-MOFs (ZR) 204 0 204 204

NW Hypothetical MOFs (NW) 137,000 30,160 106,840 20,156

UO Hypothetical MOFs (UO) 324,500 32,993 291,507 61,247

In-house synthesized via 

hypothetical design
18 0 18 5

Total 493,458 66,758 426,700 98,962

RM: (a) UM: J.Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, Chem. Mater., 25 , 3373–3382 (2013); (b) CoRE: Y. G. Chung, et al., Chem. Mater., 26, 6185–6192 (2014);  

(c) CSD17: P. Z. Moghadam et al., Chem. Mater., 29, 2618–2625 (2017).
MO: R. L. Martin, L.-C. Lin, K. Jariwala, B. Smit, M. Haranczyk, J. Phys. Chem. C 117, 12159-12167 (2013); 

IS: Y. Bao, R. L. Martin, M. Haranczyk, M. W. Deem, J. Phys. Chem. C 119, 186-195 (2015).
ISS: Y. Bao, R. L. Martin, C. M. Simon, M. Haranczyk, B. Smit, M. W. Deem, Phys. Chem. Chem. Phys., 17, 11962-11973 (2015).

M74: M. Witman, S. Ling, S. Anderson, L. Tong, K.C. Stylianou, B. Slater, B. Smit, M. Haranczyk, Chem. Sci., 7, 6263-6272 (2016).
TB: Y. J. Colón, D. A. Gómez-Gualdrón, and R. Q. Snurr, Cryst. Growth Des., 17, 5801–5810 (2017).                              

ZR: D. A. Gómez-Gualdrón, O.V. Gutov, V. Krungleviciute, B. Borah, J. E. Mondloch, J. T. Hupp, T. Yildirim, O.K. Farha, R.Q. Snurr, Chem. Mater. 26, 5632-5639 (2014).
NW: C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 4, 83−89 (2012).

UO: M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff,  and T. K. Woo, Eur. J. Inorg. Chem., 2016, 4505–4511 (2016).

Compiled a MOF database of ~500,000 compounds
~100,000 MOFs assessed for temperature + pressure swing storage

~100,000 MOFs assessed for pressure swing storage



High-Throughput Screening
Predicted usable H2 capacities for PS and TPS conditions

Pressure swing: Pmax= 100 bar to Pmin= 5 bar at 77 K

Temp+pressure swing: Tmin= 77 K, Pmax= 100 bar to Tmax= 160 K, Pmin= 5 bar

BLUE = Temperature + pressure swing operation

BLACK = Pressure swing operation

MOF-5 (7.8 wt.% & 51.9 g/L)

MOF-5 (4.5 wt.% & 31.1 g/L)

IRMOF-20 (5.7 wt.% & 33.4 g/L)

SNU-70 (7.3 wt.% & 34.3 g/L)

PCN-610/NU-100 (10.1 wt.% & 35.5 g/L)

Only 180 MOFs surpass

MOF-5 under TPS conditions 

Ahmed et al., Balancing Gravimetric and Volumetric 
Hydrogen Density in MOFs, 
Energy & Environmental Science, 10, 2459 (2017)

DOI: 10.1039/C7EE02477K

Ahmed et al., Exceptional Hydrogen Storage 
Achieved by Screening Nearly Half a Million Metal-
Organic Frameworks, 

Nature Communications, in press (2019)

DOI: 10.1038/s41467-019-09365-w

UMCM-9 (7.8 wt.% & 34.1 g/L)



Concept
Machine learning will be used to guide the development of MOFs with high 

volumetric H2 capacities 

SynthesisCharacterization 
& H2 uptake

Calculate 
surface area 
& H2 uptake

AuToGraFS
structure 

generation

MOF database
493,000+ 

compounds

Machine 
Learning 
analysis

Properties 
for high vol. 

capacity

MOFs exceeding 
50 H2 g/L

Promising
MOFsRapid capacity 

prediction
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• Packing of congruent convex objects indicates that particle morphology and 
the size distribution are key factors in determining packing efficiency 

• We shall vary these properties systematically, leveraging advances in colloid 
science for the controlled growth of MOFs with various shapes and sizes 

Crystal Engineering

Control	#:	1647-1542	

	 9	

Crystal formation in solution involves nucleation followed by crystal growth. One approach to 
controlling this process is through modulator groups that contain the same functionality as the 
MOF linker. An example of this is the timed addition of the monocarboxylate, p-
trifluoromethylbenzenecarboxylate to regulate the size of MOF-5 crystals in the range of 100-200 
nm [17]. In contrast, modulating crystal nucleation can be achieved by adding the modulator at the 
outset of the reaction, as was demonstrated for HKUST-1 with decanoic acid. Here sizes ranging 
from a few tens of nanometers to a few microns could be obtained (Fig. 6) [18]. Similarly, 
morphology control can be induced by the addition of a modulator with multiple functionalities, 
as shown by co-PI Matzger (Fig 7). They showed that the morphology of MOF-5 can be tuned 
[19] by introducing small amounts of a secondary linker: a reaction mixture containing ~10 mol.% 
H3BTB (a tricarboxylic acid linker) generates octahedral MOF-5 crystals. This dramatic change in 
crystal shape from a cubic habit to an octahedral shape is an example of an additive-induced 
morphological change. Other morphologies will become available by changing the identity of the 
secondary linker. Finally, we will also explore strategies to enhance MOF compaction, such as 
intentionally retaining solvent in the MOF pores during compaction to minimize pore collapse.    

2.3 Feasibility  
The use of adsorbents for gas storage and separations is a well-known technology [20]. The 
extensions proposed here (Sec. 3, “Work Plan”) build naturally upon prior studies demonstrating 
the ability to synthesize solvent-free MOFs [21, 22], and on our on-going computational screening 
studies. Scale-up of many adsorbents is now performed routinely by several industrial entities (e.g., 
BASF) [23]. Finally, we have assembled a team (see section 4, “Technical Qualifications and 
Resources”) with the expertise and facilities to successfully conduct all aspects of our work plan. 
Taken together, these factors suggest that the R&D plan proposed here is highly feasible.	 
3. Work Plan 
3.1 Work Breakdown Structure and Task Description Summary 

Our proposed work plan is organized into two primary tasks: 
Task 1: MOF discovery guided by machine learning  

Task 2: Enhanced MOF packing density via crystal engineering 

Both tasks will span the 3-year duration of the project, and both tasks are comprised of several 
sub-tasks, described below. Feedback between tasks will be exploited to further optimize MOF 
performance. For example, promising MOFs identified in Task 1 will be synthesized using the 
techniques developed in parallel by Task 2. This feedback will allow for a holistic approach to 
adsorbent design that maximizes performance at both the intrinsic (materials) and systems level. 

 
 
Fig. 7:  Synthesis of octahedral-shaped MOF-5 crystals by addition of H3BTB in the reaction mixture of H2BDC 
and Zn(NO3)2×6H2O. Photographs show the dependence of crystal morphology on the percentage of H3BTB (scale 
bar: 100 µm). Another phase (needle shaped UMCM-1) appears above 10 mol % of H3BTB.   

Fig. 1: Synthesis of octahedral-shaped MOF-5 crystals by addition of H3BTB in the reaction mixture of H2BDC and Zn(NO3)2×6H2O.
Photographs show the dependence of crystal morphology on the percentage of H3BTB (scale bar: 100 µm). Another phase (needle
shaped UMCM-1) appears at 10 mol% H3BTB. From Matzger et al., JACS (2011) 133, 20138

Fig. 2: Average size of HKUST-1 crystals as a function of
dodecanoic acid concentration taken at longer and longer
times. Colors represent different concentration of dodecanoic
acid. From Diring, et al., Chem. Mater., (2010) 22, 4531
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Accomplishments and Progress

Accomplishments: MOF-5 Benchmark
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Machine Learning Approach

*Zeo++: T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, and M. Haranczyk, Microporous and Mesoporous Materials, 149 ,134-141 (2012).

7 Crystallographic features
calculated via Zeo++

H2 storage capacities at 
4 conditions calculated via GCMC 

ML was used to make capacity predictions from crystallographic features

4 crystallographic features
calculated via Zeo++

Usable H2 storage capacities 
at 77 K for PS between 5 & 100 bar 

calculated via GCMC

The reverse process was used to predict of crystallographic 
properties consistent with a target capacity
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12 supervised learning methods from 5 different categories were used

ML Methods Tested

• Scikit-learn: Pedregosa et al.,  Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830, 2011.
• R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Linear Regression; Ridge Regression (Generalized Linear Model)
T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Random Forest (RF)
L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

Bagging with DT; Bagging with RF (Bagging)
L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

Boosted DT; Ada Boost with RF (Ada Boost)
H. Drucker. “Improving Regressors using Boosting Techniques”, 1997

Gradient Boosting
J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

Extremely Randomized Trees 
P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

Support Vector Machine (SVM) 
A. J. Smola, B. Schölkopf,  “A Tutorial on Support Vector Regression”, Statistics and Computing archive, 14(3), 199-222, 2004.

K-Nearest Neighbors (K-NN) 
N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression”. The American Statistician. 46(3), 175–185, 1992.

En
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m
bl

e 
M

et
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Decision Trees (DT) 
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.

Machine Learning Software & Code: Scikit-learn, R, & in-house code
Hyperparameter Optimization Method: Grid search cross validation method

Training Set: 74, 221;   Test Set:  24,741;  Unseen Data Set: 394,496
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ML Predictions of Capacities
Comparison between Extremely Randomized Trees ML prediction and GCMC

R2 = 0.995

AUE = 0.15 wt.%
RMSE = 0.25 wt.%

R2 = 0.983

AUE = 1.0 g/L
RMSE = 1.4 g/L

Kendall ! = 0.92 Kendall ! = 0.96
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Structure-Property Correlations
ML models were developed for all possible combinations of crystallographic 

features to identify the optimal feature set

Usable Gravimetric Usable Volumetric

Each histogram represents the highest R2 value among 
all possible combinations of a given number of features. 
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H2 Storage in 500,000 MOFs 
ML reveals 69,363 MOFs that can potentially out-perform IRMOF-20

11

80%

20%

 GCMC Calculated Data Set/ Training & Testing ML Models
 To be Predicted via Machine Learning 

 

GCMC Calculated Dataset will be used for Training & Testing ML Models
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ML reveals 69,363 & 9,289 MOFs that can potentially out-perform IRMOF-20 [1] 
and NU-100/PCN-610 [2], the top performing MOF on a volumetric basis

H2 Storage in ~500,000 MOFs 

NU-100/PCN-610: 10.1 wt.% & 35.5 g/L

IRMOF-20: 5.7 wt.% & 33.4 g/L
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Go/No-Go

Crystallographic Property ML Prediction
Density (g/cm3) 0.49 ± 0.01
Gravimetric Surface Area (m2/g) 5222 ± 402
Pore Volume (cm3/g) 1.74 ± 0.03
Void Fraction 0.86 ± 0.02

Task 
No. Task Title Milestone 

Type Milestone Description
Milestone 

Verification 
Process

Due
(Date) Status

1.3 MOF reverse 
engineering Go/No-Go

Identify ranges for 4 MOF crystallographic 
properties (surface area, density, pore volume, &
porosity) consistent with usable volumetric
capacity of at least 40 g/L and usable gravimetric 
capacity of at least 7 wt. % (assuming an 
isothermal pressure swing between 100 and 5 
bar at 77 K) based on single crystal density. 

Demonstrate that the identified ranges are within 
the realm of possibility for the development of 
new MOFs, and thus provide a pathway for 
meeting the DOE storage targets.

Random forest 
or SVM 

analysis of 
MOF 

properties and 
direct GCMC 
simulation

8/31/18 Passed

The Y1 Go/No-Go milestone was successfully met
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Go/No-Go

Single Crystal Density Void Fraction

0.49 g/cm3

0.86

ML input capacities: 
7 wt.% & 40 g/L

Crystallographic property 
corresponding to 7 wt.% & 40 

g/L

Crystallographic properties 
corresponding to UG & UV 

range  (dashed region)

Range of capacities:
5-8 wt. % and 36-40 g/L

ML models were trained ‘in reverse’ to predict the crystallographic propoperties
that correspond to a specified usable capacity 
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Milestone 1.4

Task 
No. Task Title Milestone Description

Milestone 
Verification 

Process

Due Date
(Month) Status

1.4 Data 
Dissemination

Make list of structures available to 
HyMARC team and to general public 
via web download.

Data access 
confirmed by 

HyMARC 
partners

18 Complete

Data generated from our prior high-throughput screening studies have been 
uploaded to the HyMARC data hub
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Data Dissemination
https://datahub.hymarc.org
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Data Dissemination
Crystallographic 
properties
of 495,305 MOFs

Usable pressure swing 
capacities of 98,695 
MOFs

Usable temp + 
pressure swing 
capacities of 
98,695 MOFs
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Milestone 1.5

Task 
No. Task Title Milestone Description Milestone Verification 

Process
Due Date
(Month) Status

1.5 Validate ML 
predictions

Use GCMC to validate ML predictions of highest 
capacity MOFs on a pressure swing and 
temperature + pressure swing basis.

Attempt to synthesize 1-2 of the most promising 
MOF candidates. Assess surface areas; if within 
85% of theoretical value perform PCT capacity 
measurements

GCMC calculations, 
BET surface area 

measurements, and 
PCT measurements

21

Complete.
(Additional 

experiments on-
going)

Milestone has been met.
Additional experimental work is on-going to realize high-capacity MOFs for 

temperature + pressure swing operation
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Pressure Swing

Usable Gravimetric Capacity (wt. %)
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ML Predicted
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Usable Gravimetric Capacity (wt. %)
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NU-100/PCN-610: 10.1 wt.% & 35.5 g/L

Northwestern MOFs
Real MOFs

Univ. of Ottawa
Other hypothetical MOFs

Identified 6,336 MOFs (out of ~500,000) using ML that surpass the usable capacity 
of NU-100/PCN-610 under pressure swing conditions (100 à 5 bar at 77K. 

MOFs predicted by ML to be the highest capacity were validated using more accurate 
GCMC calculations 
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Pressure Swing

MOF Name Source
Density

(g/cm3)

Gravimetric

Surface Area 

(m2/g)

Volumetric

Surface Area 

(m2/cm3)

Void

Fraction

Pore

Volume 

(cm3/g)

Largest

Cavity 

Diameter 

(Å)

Pore

Limiting 

Diameter 

(Å)

Usable Grav. Capacity (wt. %) Usable Vol. Capacity (g/L)

GCMC ML GCMC-ML GCMC ML GCMC-ML

mof_7642 ToBaCCo 0.30 5561 1695 0.89 2.93 12.8 11.8 11.1 10.3 0.8 40.5 37.4 3.0
mof_7690 ToBaCCo 0.30 5715 1706 0.89 2.98 12.8 12.0 11.3 10.4 0.9 40.3 37.3 3.0
mof_7594 ToBaCCo 0.40 5070 2031 0.86 2.15 11.2 9.7 8.6 7.9 0.7 39.9 37.0 2.9
mof_7210 ToBaCCo 0.29 5936 1730 0.89 3.04 13.4 11.7 11.4 10.5 0.9 39.8 37.1 2.8
mof_7738 ToBaCCo 0.25 6054 1502 0.90 3.64 14.5 13.5 13.0 12.0 1.0 39.7 37.0 2.7
hypotheticalMOF_5045702_i_1_j_24_k_20_m_2 NW 0.31 5926 1820 0.88 2.87 16.0 11.0 10.9 10.1 0.8 39.7 37.2 2.5
str_m3_o19_o19_f0_nbo.sym.1.out UO 0.31 5073 1583 0.90 2.88 17.7 12.9 10.8 10.1 0.7 39.7 37.1 2.6
hypotheticalMOF_5037315_i_1_j_20_k_12_m_1 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 0.9 39.7 37.0 2.6
hypotheticalMOF_5037467_i_1_j_20_k_12_m_8 NW 0.31 5860 1800 0.88 2.85 16.0 11.0 10.9 10.0 0.9 39.7 37.0 2.7
str_m3_o5_o20_f0_nbo.sym.1.out UO 0.39 4772 1882 0.87 2.22 14.1 9.6 8.7 8.1 0.7 39.7 37.2 2.5
hypotheticalMOF_5037563_i_1_j_20_k_12_m_13 NW 0.31 5897 1811 0.88 2.87 16.1 11.0 10.9 10.1 0.8 39.7 37.2 2.5
hypotheticalMOF_5038404_i_1_j_20_k_20_m_15 NW 0.31 5870 1803 0.88 2.87 16.0 11.0 10.9 10.1 0.8 39.7 37.2 2.5
hypotheticalMOF_5037379_i_1_j_20_k_12_m_4 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 0.8 39.6 37.0 2.6
hypotheticalMOF_5037407_i_1_j_20_k_12_m_5 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 0.8 39.6 37.0 2.6
hypotheticalMOF_5037479_i_1_j_20_k_12_m_9 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 0.8 39.6 37.0 2.6
hypotheticalMOF_5055561_i_1_j_28_k_20_m_11 NW 0.31 5874 1804 0.88 2.87 16.0 11.0 10.9 10.1 0.8 39.6 37.2 2.4
hypotheticalMOF_5037439_i_1_j_20_k_12_m_7 NW 0.31 5858 1799 0.88 2.85 16.0 11.0 10.9 10.0 0.9 39.6 37.0 2.6
hypotheticalMOF_5037499_i_1_j_20_k_12_m_10 NW 0.31 5854 1798 0.88 2.85 16.0 11.0 10.9 10.0 0.9 39.6 37.0 2.6
hypotheticalMOF_5037531_i_1_j_20_k_12_m_11 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 0.8 39.6 37.0 2.6
hypotheticalMOF_5037523_i_1_j_20_k_12_m_11 NW 0.31 5857 1799 0.88 2.86 16.0 11.0 10.9 10.0 0.8 39.6 37.1 2.5
NU-100/PCN-610 10.1 35.5
NU-100/PCN-610 + 10% 11.1 39.1

List of highest-capacity MOFs and their respective capacities as predicted by 
ML and subsequent GCMC calculations 

GCMC and ML generally agree within 1 wt.% and 2-3 g/L
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Temp + Pressure Swing

Usable Gravimetric Capacity (wt. %)

U
sa

bl
e 

Vo
lu

m
et

ric
 C

ap
ac

ity
 (g

/L
)

Northwestern MOFs
Real MOFs

Univ. of Ottawa
Other hypothetical MOFs

MOF-5: 7.8 wt.% & 51.9 g/L

Usable Gravimetric Capacity (wt. %)
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ML Predicted
GCMC Calculated

MOF-5

Identified only 20 MOFs that surpass the usable capacity of MOF-5 under 
temperature + pressure swing conditions between 100 bar/77 K and 5 bar/160 K 
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Temp + Pressure Swing

MOF Name Source Density
(g/cm3)

Gravimetric
Surface 

Area (m2/g)

Volumetric
Surface 

Area 
(m2/cm3)

Void
Fraction

Pore
Volume 
(cm3/g)

Largest
Cavity 

Diameter 
(Å)

Pore
Limiting 
Diamete

r (Å)

Usable Gravimetric 
Capacity (wt. %)

Usable Volumetric 
Capacity (g/L)

GCMC ML GCMC-
ML GCMC ML GCMC-ML

str_m1_o1_o11_f0_pcu.sym.102.out UO 0.45 4352 1974 0.84 1.84 12.9 10.1 10.4 9.7 0.7 53.1 48.1 4.9
str_m1_o1_o11_f0_pcu.sym.117.out UO 0.47 4162 1977 0.83 1.74 12.8 9.9 9.9 9.0 0.9 52.8 48.0 4.8
str_m1_o1_o11_f0_pcu.sym.121.out UO 0.47 4263 2006 0.83 1.76 12.1 10.2 10.0 9.4 0.6 52.7 48.1 4.6
str_m1_o1_o11_f0_pcu.sym.13.out UO 0.46 4326 2005 0.83 1.79 12.7 9.9 10.1 9.3 0.8 52.6 48.0 4.6
str_m1_o1_o11_f0_pcu.sym.159.out UO 0.58 3703 2138 0.80 1.38 10.4 8.6 8.3 7.6 0.7 52.6 48.5 4.1
str_m1_o1_o11_f0_pcu.sym.200.out UO 0.45 4359 1978 0.84 1.84 12.9 10.1 10.3 9.6 0.7 52.6 48.1 4.5
str_m1_o1_o11_f0_pcu.sym.212.out UO 0.60 3417 2035 0.83 1.39 12.0 10.1 8.1 7.5 0.5 52.5 48.1 4.4
str_m1_o1_o11_f0_pcu.sym.51.out UO 0.46 4330 2007 0.83 1.79 11.9 9.9 10.1 9.3 0.8 52.5 48.1 4.4
str_m1_o1_o11_f0_pcu.sym.71.out UO 0.45 4436 1980 0.84 1.87 13.0 10.9 10.4 9.7 0.8 52.5 48.1 4.4
str_m1_o1_o11_f0_pcu.sym.89.out UO 0.58 3507 2043 0.83 1.42 12.4 9.8 8.2 7.7 0.5 52.5 48.1 4.4
str_m1_o1_o17_f0_pcu.sym.1.out UO 0.46 4283 1985 0.83 1.79 11.9 9.9 10.1 9.4 0.7 52.5 48.3 4.2
str_m1_o1_o17_f0_pcu.sym.104.out UO 0.46 4439 2032 0.83 1.82 12.5 11.0 10.2 9.6 0.6 52.4 48.2 4.2
str_m1_o1_o17_f0_pcu.sym.129.out UO 0.60 3585 2157 0.83 1.37 14.6 9.2 7.9 7.6 0.3 52.3 48.2 4.1
str_m1_o1_o17_f0_pcu.sym.132.out UO 0.60 3438 2048 0.83 1.39 12.7 10.8 8.0 7.8 0.2 52.3 48.3 4.0
str_m1_o1_o17_f0_pcu.sym.28.out UO 0.57 3732 2117 0.80 1.41 13.1 10.9 8.4 7.8 0.6 52.2 48.1 4.2
str_m1_o1_o2_f0_pcu.sym.1.out UO 0.56 3615 2011 0.83 1.49 13.1 10.8 8.5 7.9 0.6 52.2 48.4 3.8
str_m1_o1_o2_f0_pcu.sym.101.out UO 0.56 3549 1978 0.84 1.50 12.9 10.7 8.5 7.7 0.8 52.1 48.1 4.0
str_m1_o1_o2_f0_pcu.sym.11.out UO 0.44 4487 1986 0.84 1.89 12.4 10.3 10.4 9.7 0.8 52.0 48.2 3.8
str_m1_o1_o2_f0_pcu.sym.15.out UO 0.41 4983 2054 0.84 2.04 12.7 9.1 11.1 10.3 0.8 52.0 48.1 3.9
str_m1_o1_o2_f0_pcu.sym.2.out UO 0.47 4179 1977 0.83 1.75 11.9 9.8 9.8 9.0 0.9 52.0 48.0 3.9
MOF-5 7.8 51.9

List of highest-capacity MOFs and their respective capacities as predicted by ML and 
subsequent GCMC calculations for 400,000 MOFs ‘unseen’ by ML 

GCMC and ML generally agree to within 1 wt.% and 3-5 g/L



29

Top performing MOFs predicted by GCM calculations for temperature + 
pressure swing

MOF Synthesis

Name Database Density GSA VSA VF PV LCD PLD TPS  UG TPS UV

MOF-5_cooh_2_16_4_basic_opt Mail-order 0.70 3072 2154 0.68 0.68 7.8 12.2 8.0 61.1
MOF-5_cooh_2_2738_1_basic_opt Mail-order 0.47 4548 2149 0.78 1.34 7.8 15.8 10.8 57.7
BOQQAB (MOF-650) CSD 0.49 3908 1919 0.85 1.73 18.3 9.9 10.2 56.5
MOF-5_cooh_2_972_1_basic_opt Mail-order 0.67 3038 2037 0.74 0.95 6.7 11.9 7.5 54.9
hypotheticalMOF_5056615_i_1_j_29_k_2_m_2_cat_1 Northwestern 0.56 4388 2474 0.79 1.41 7.9 9.6 8.6 53.8
ODIXEG (PCN-516) CSD 0.55 4090 2259 0.84 1.42 10.4 7.5 8.8 53.7
hypotheticalMOF_5057692_i_1_j_29_k_19_m_2 Northwestern 0.55 4546 2489 0.80 1.47 7.2 9.4 8.8 53.6
ENITAX CSD 0.57 4021 2304 0.83 1.36 10.1 7.2 8.5 53.5
FINJAO CSD 0.47 6977 3258 0.80 1.70 7.4 6.4 10.2 53.5
TEQPEM CSD 0.57 3456 1980 0.86 1.45 17.2 9.2 8.5 53.5

Red highlighted MOFs were chosen for synthesis and activation 
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MOF-5_cooh_2_16_4_basic_opt

MOF-31 Synthesis

H2ADC (Acetylene dicarboxylic acid)

O. Yaghi, et al., J. Am. Chem. Soc., 123, 8239(2001)

• Obtained material (in combination with a minor phase) washed with 
ethanol two times and solvent exchange with CH2Cl2. Activated by dynamic 
vacuum (10-2 Torr) at room temperature for 24 h.

• The obtained material exhibits a very low BET surface area: 13 m2/g 
(calculated value: 3072 m2/g).

• Flowing supercritical CO2 activation: The ethanol soaked sample was 
exchanged with supercritical CO2 at 100 bar resulting in a material with a 
very low BET surface area of 13 m2/g.
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MOF-5_cooh_2_972_1_basic_opt

TMOF-2 Synthesis

90 °C, 72h

PJ Llabres-Campaner, et al., Dalton Trans., 46, 7397(2017)

H2BCCA (Bicyclo[2.2.2]octane-1-carboxylic acid)

• Desired MOF solvent exchanged with DMF followed by CH2Cl2. Activated by 
dynamic vacuum (10-2 Torr) at room temperature for 24 h.

• The obtained material exhibits a very low BET surface area of 8 m2/g 
(calculated value: 3038 m2/g).

• Flowing supercritical CO2 activation: The DMF soaked sample was 
exchanged with supercritical CO2 at 100 bar resulting in a material with a 
BET surface area of 621 m2/g.
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Milestone 2.2

Task 
No. Task Title Milestone Description

Milestone 
Verification 

Process

Due
(Month) Status

2.2 Particle size control
Determine if particle size influences packing 

efficiency by more than 10% for particles whose 
size varies by more than an order of magnitude

Void fraction 
measurements 15 Complete
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• Preliminary MOF-5 packing density measurements were performed using the setup 
below in a glovebox

• The packing efficiencies were assessed experimentally and expressed as a fracAon of 
the single crystal density 

• Around 100 mg of MOF-5 sample was used for each measurement, which was 
tapped   1̴00 – 200 Ames unAl no visible gaps were seen. Finally, a plunger was used 
to determine the upper posiAon of the powder column

Packing Density Measurements

Fig. 1: Setup used for determining packing density. Volume of sample used was determined using the formula, volume of cylinder =
π*r2*h. Efforts were made to be as consistent as possible for each measurement, for instance, the number of taps, the amount of
sample used were all kept as constant as possible.

h1 h2

MOF-5 
addition

MOF-5 h = h2-h1

r = (outer diameter –Inner dimeter)/2
= 5.20 mm

Particle Size
(MOF-5)

Packing Density 
(g/cm3)

% SC 
Density

100-400 μm 0.345 57.2

500-1000 μm 0.372 61.8

1300-1900 μm 0.366 60.7
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To achieve consistent results we designed a small-scale jolting volumeter for 
packing density determination 

Packing Density Measurements

Fig. 1: Instrumental setup for determining packing density for NaCl



MOF-5

Compac'on Proper'es of MOFs

! = 1
! = −0.616× )*+,-./0

),1234+5
+ 1.32

Decrease in max 
excess uptake

T = 77 K
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Controlling MOF particle size shows promise for
maintaining capacity at higher packing densities, 
without the need for physical compaction

MOF-5 Particle Size Packing Density (g/cm3) % SC Density

100-400 μm 0.345 57.2

500-1000 μm 0.372 61.8

1300-1900 μm 0.366 60.7

Size-controlled MOF-5
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• Goal: Overcome volumetric limitations associated with physisorptive
hydrogen storage at both the materials and systems level in metal-organic 
frameworks (MOFs)

• Approach:
– Control MOF crystal morphology and crystallite size distribution to increase packing 

density 
– Apply machine learning techniques to identify, design, and demonstrate high-

capacity MOFs 

• Accomplishments:
– Used machine learning to identify MOF crystallographic properties consistent with 

a target hydrogen storage capacity (1st Go/No-go)

– Extended ML predictions of MOF capacity to temperature + pressure swing 
operation
• Highest-capacity MOFs were validated by more rigorous GCMC calculations 
• Experimental synthesis of selected MOFs is on-going

– Controlling MOF particle size shows promise for maintaining capacity at higher 
packing densities, without the need for physical compaction

umich.edu/~djsiege
djsiege@umich.edu

Summary
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Focus on 2nd go/no-go milestone: Demonstrate an 
improvement in either

a) a MOF with a single crystal volumetric capacity greater 
than 39 g/L usable capacity measured at 77 K, and 5-100 
bar pressure (i.e., a 10% increase over the current state-
of-the-art NU-100) through Machine Learning-directed 
material development

OR
b) a 15% increase in tap density through crystal 
engineering methods for a specific MOF compared to its 
non-optimized powder, with a minimal loss in surface 
area

Potential Future Work
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Justin Mike Antek

Adam

Alauddin Don

The Team

Darpan Suresh
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University of Michigan, Mechanical Engineering
– Atomistic simulation and project management

University of Michigan, Dept. of Chemistry
– Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)
– PCT measurements
– Materials augmentation, characterization, scale-up, and 

system modeling

HSECoE/SRNL (unfunded collaborator)
– Assistance with system models (David Tamburello)

Collaborations
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• Many more compounds identified by computation than can 
be synthesized
– Assessment by a human is needed before synthesis can proceed
– This is a bottleneck

• Structure collapse or incomplete solvent removal during 
activation
– “Can it be made?” 
– Failure to achieve expected surface area and porosity
– Properties that control “synthesizability” are not well-understood

• Incorrect, incomplete, or disordered crystal structure data
– Garbage in, garbage out
– False positives in screening 

Challenges and Barriers
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Technical Backup Slides



! 4!

!
!

!
Figure S4. Theoretical total (adsorbed + gas phase H2 at 77 K and 35 bar) volumetric and 

gravimetric density of stored H2 in ∼4000 MOFs mined from the CSD.  Gravimetric density is 
expressed in terms of weight % hydrogen: g H2/(g H2+g MOF) x 100. The data account only for 

the mass and volume of the MOF media; mass and volume contributions from the system are 
neglected. For comparison, the region bounded by the dashed lines represents the DOE 2017 
targets for H2 storage systems. Crossed circles represent common MOFs with incomplete or 

disordered crystal data in the CSD; structures for these compounds were constructed by hand. 
Additional data for the top- performing MOFs is given in Table 1. 

!

Theore&cal*Total*Hydrogen*Storage*

4"

HSECoE"is"here"
(MOF15)"

Promising"MOFs"

J. Goldsmith, et al., 
Chem. Mater., 25, 3373 (2013). 

Prior work: developed a database of MOFs by mining the CSD. Chahine rule
and crystal structure were used to predict H2 capacity in thousands of compounds  

42

High-throughput Screening



43

• GCMC = atomistic method that calculates the total amount of H2 (adsorbed + gas 

phase) contained within the pore space of a MOF at given T, P

• Does not rely on empirical correlations such as the Chahine-rule

*Michels, de Graaff and Seldam, Physica, 1960, 26, 393; Ryan, Broadbelt, and Snurr, Chem. Comm. 2008, 4134 
**Fischer, Hoffmann, Fröba, ChemPhysChem, 2009,10, 2647.

H2 

Molecule 

Unified 

Atom 

Model

• Calculations employ the MGS* and the Pseudo-
FH** unified atom models for H2-MOF interactions

• MOF atoms are fixed

Example GCMC simulation of CH4 adsorption 

in Ni-DOBDC at 298 K and 35 bar

Force Field Sigma (Å) Epsilon/kB (K)

MGS 2.958 36.7

Pseudo-FH 3.064 30.1

Grand Canonical Monte Carlo
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GCMC isotherms calculated with the pseudo-Feynman-Hibbs interatomic 
potential are in very good agreement with our measured isotherms

Examples of Simulated Isotherms
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Benchmarking ML Methods
The Extremely Randomized Trees method is the best performing ML algorithm
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Comparison of ML Methods
The Extremely Randomized Trees method is the best performing ML algorithm

Usable Gravimetric Capacity 
Pmax = 100 bar

Usable Volumetric Capacity 
Pmax = 100 bar
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Structure-Property Correlations

Each point on the plot represents the highest R2 value among 
all possible(2n -1) combinations of (n = 1,2,3,4,5,6,7) features

• Void fraction shows the strongest correlation with UV
• Only 4 features needed to predict UV with over 96% accuracy

Single Feature PerformanceEffect of Number of Features
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Go/No-Go

14

Correlations between ML predicted and zeo++/GCMC calculated crystallographic properties

of 24,741 MOFs (not used in training ML models). ML models were trained using GCMC

calculated usable capacities of 74,221 MOFs as input features.

R2 = The coefficient of determination; AUE = Average Unsigned Error; RMSE = Root-Mean-Square-Error

Kendall ! = Kendall rank correlation coefficient, which measures the degree of similarity between the rankings of actual

and predicted data sets.

Expected density via zeo++/GCMC (g/cm3)
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Expected void fraction via zeo++/GCMC

M
L 

pr
ed

ic
te

d 
vo

id
 fr

ac
tio

n

R2 = 0.980

AUE = 0.010 g/cm3

RMSE = 0.056 g/cm3

Kendall t = 0.984

R2 = 0.947

AUE = 0.017 

RMSE = 0.029

Kendall t = 0.904

Go/No-Go:
Demonstration of Crystallographic Property Predictions (1)

Single Crystal Density Void Fraction

15

Expected pore volume via zeo++/GCMC (cm3/g)
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R2 = 0.998
AUE = 0.026 cm3/g
RMSE = 0.035 cm3/g
Kendall t = 0.966

R2 = 0.920
AUE = 402 m2/g
RMSE = 539 m2/g
Kendall t = 0.906

Go/No-Go:
Demonstration of Crystallographic Property Predictions (2)

Correlations between ML predicted and zeo++/GCMC calculated crystallographic properties
of 24,741 MOFs (not used in training ML models) . ML models were trained using GCMC
calculated usable capacities of 74,221 MOFs as input features.

R2 = The coefficient of determination; AUE = Average Unsigned Error; RMSE = Root-Mean-Square-Error
Kendall ! = Kendall rank correlation coefficient, which measures the degree of similarity between the rankings of actual
and predicted data sets.

Pore Volume Gravimetric Surface Area
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Go/No-Go

Pore Volume Gravimetric Surface Area

1.74 cm3/g

5222 m2/g

ML input capacities: 
7 wt.% & 40 g/L

Crystallographic property 
corresponding to 7 wt.% & 40 

g/L

Crystallographic properties 
corresponding to UG & UV 

range  (dashed region)

Range of capacities:
5-8 wt. % and 36-40 g/L

ML models were trained ‘in reverse’ to predict the crystallographic propoperties
that correspond to a specified usable capacity 
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Crystal Size Control (1)

Synthesis Protocols
Varying Metal:Linker ratio

Successfully developed synthesis protocols that produce MOF-5 with different average sizes 

Zn(NO3)2·6H2O

DEF, 100 °C (12hr) 

+

1000 μm 

1000 μm1000 μm

1000 μm

M:L=1.5 M:L=2.5 M:L=3.5 

Agitating 
reaction mixture

100-400 μm 500-1000 μm 1300-1900 μm

50-150 μm

100-250 μm
M:L=1.5 

100 rpm

60 rpm
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Crystal Size Control (2)
Crystal size histograms indicate the successful control over crystal size 

1000 μm 

1000 μm

1000 μm

Mean = 758 µm
Standard Error = 13
Coefficient of Variation = 0.28
Median = 754
Mode = 737
Standard Dev. = 210
Count = 253

Mean = 1633 µm
Standard Error = 39
Coefficient of Variation = 0.24
Median = 1590
Mode = 1675
Standard Dev. = 389
Count = 97

Mean = 192 µm 
Standard Error = 1.9
Coefficient of Variation = 0.29
Median = 179
Mode = 174
Standard Dev. = 56
Count = 828

Varying the size distribution of cubic MOF-5 crystallites
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Crystal Size Control (3)
Crystal size histograms indicate the successful control over crystal size 

80 µm  

80 µm  

Varying the size distribution of cubic MOF-5 crystallites



56

Morphology Control (1)
Identified additive capable of controlling morphology of MOF-5 crystals

H2BDC
H3L

+
Zn(NO3)2·6H2O

DEF, 100 °C

0% H3L 5.8% H3L/24h 5.8% H3L/48h
Cubo-oct.OctahedronCubic

Fig. 1: Optical images of different morphologies of MOF-5
crystals obtained by the addition of H3L

Fig.2: Phase purity of obtained morphologies was confirmed through PXRD
and it was observed that powder patterns of all morphologies were found to
agree with the simulated pattern of MOF-5 extracted from the crystal
structure

H3L=1,3,5-tris(4-carboxyphenyl)benzene
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Morphology Control (2)
Identified additive capable of controlling morphology of MOF-5 crystals

Zn(NO3)2·6H2O

DEF, 100 °C
0% H4L 1.6% H4L/24h

H2BDC

+

H4L

6.6% H4L/24h 6.6% H4L/48h

cubic

sphere
Sphere
+ Oct.

Cubo-oct

H4L=5’-((3,5-dicarboxyphenyl)ethynyl)-[1,1’:3’,1’’-
terphenyl]-4,4’’-dicarboxylic acid) 

Fig.1: Optical images of different morphologies of MOF-5
crystals obtained by the addition of H4L

Fig.2: Phase purity of obtained morphologies was confirmed through
PXRD and it was observed that powder patterns of all morphologies were
found to agree with the simulated pattern of MOF-5 extracted from the
crystal structure
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Gravimetric Volumetric

Maximum Difference 1.67 wt. %
Minimum Difference -0.96 wt.%

Average Unsigned Error 0.21 wt. %
Standard Deviation 0.17 wt. %

Maximum Difference 3.05 g/L
Minimum Difference -4.46 g/L

Average Unsigned Error 0.62 g/L
Standard Deviation 0.51 g/L

PS: ML Predictions and Validations (2)
Correlations between ML predicted and GCMC calculated usable capacities of top
15,902 unseen (out of ~400,000 compounds not used in training and testing of ML
models) high-capacity MOFs at 77K for the pressure swing between 100 and 5bar
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G
C

M
C

 C
al

c.
 U

sa
b.

 G
ra

v.
 C

ap
ac

ity
 (w

t. 
%

)

G
C

M
C

 C
al

c.
 U

sa
b.

 V
ol

um
. C

ap
ac

ity
 (g

/L
)

ML Predicted Usab. Volum. Capacity (g/L)



0 10 20 30 40 50
0

10

20

30

40

50

M
L 

P
re

d.
 TP

S
 U

sa
b.

 V
ol

. C
ap

ac
ity

 (w
t. 

%
)

GCMC Calc. TPS Usab. Grav. Capacity (wt.%)GCMC Calculated UG@TPS (wt. %)

M
L
 P

re
d

ic
te

d
 U

G
@

T
P

S
 (

w
t.

 %
)

R2 = 0.996

AUE = 0.17 wt. %
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Kendall ! = 0.96  
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Kendall ! = 0.81  

TPS: Benchmarking ML Predictions (1)

Gravimetric Capacity Volumetric Capacity

Correlations between ML predicted and GCMC calculated usable capacities of 24,741 MOFs

(not used in training ML models) at 77 K for the temperature+pressure swing between

100bar/77K and 5bar/160K. ML models were developed by training Extremely Randomized

Trees algorithm on a dataset of 74, 221MOFs.

The Extremely Randomized Trees method is the best performing ML algorithm
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ML models were developed for all possible (27-1 = 127) combinations of features to identify 
the optimal feature set. Each histogram represents the highest R2 value among all possible 

combinations of a given number of features.

Usable Gravimetric Usable VolumetricSingle Feature Performance

• Pore volume is the dominant feature that controls the usable volumetric capacity.
• Density and  pore volume could be used to predict UV with ~ 94% accuracy. 

TPS: Benchmarking ML Predictions (2)



58

Density: 0.30 g/cm3

Gravimetric Surface Area: 5561 m2/g 
Volumetric Surface Area: 1695 m2/cm3

Pore Volume: 2.93 cm3/g
Pore Diameter: 12.8 Å

Void Fraction: 0.89 

Density: 0.31 g/cm3

Pore Volume: 2.87 cm3/g
Gravimetric Surface Area: 5926 m2/g 

Volumetric Surface Area: 1820 m2/cm3

Pore Diameter: 16 Å
Void Fraction: 0.88

Density: 0.31 g/cm3

Pore Volume: 2.88 cm3/g
Gravimetric Surface Area: 5073 m2/g 

Volumetric Surface Area: 1583 m2/cm3

Pore Diameter: 17.7 Å
Void Fraction: 0.90

PS: Top 3 MOFs Visualized
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Top performing MOFs according to our ML+GCMC calculations at temperature+pressure

swing (TPS) conditions (between 100bar/77K and 5bar/160K).

TPS High-Capacity MOFs synthesis (1)

Name Source Density
(g/cm3)

Grav. Surf. 
Area

(m2/g)

Vol. Surf. 
Area

(m2/cm3)

Void
Fraction

Pore 
Volume
(cm3/g)

Largest 
Cav. 

Diam.
(Å)

Pore Lim. 
Diam.

(Å)

Usab. 
Grav. Cap.

(wt.%)

Usab. Vol. 
Cap.
(g/L)

MOF-5_cooh_2_16_4_basic_opt Mail-order 0.70 3072 2154 0.68 0.68 7.8 12.2 8.0 61.1

MOF-5_cooh_2_2738_1_basic_opt Mail-order 0.47 4548 2149 0.78 1.34 7.8 15.8 10.8 57.7

BOQQAB (MOF-650) CSD refcode 0.49 3908 1919 0.85 1.73 18.3 9.9 10.2 56.5

MOF-5_cooh_2_972_1_basic_opt Mail-order 0.67 3038 2037 0.74 0.95 6.7 11.9 7.5 54.9

hypotheticalMOF_5056615_i_1_j_29_k_2_m_2_cat_1 Northwesteren 0.56 4388 2474 0.79 1.41 7.9 9.6 8.6 53.8

ODIXEG (PCN-516) CSD refcode 0.55 4090 2259 0.84 1.42 10.4 7.5 8.8 53.7

hypotheticalMOF_5057692_i_1_j_29_k_19_m_2 Northwesteren 0.55 4546 2489 0.80 1.47 7.2 9.4 8.8 53.6

ENITAX CSD refcode 0.57 4021 2304 0.83 1.36 10.1 7.2 8.5 53.5

FINJAO CSD refcode 0.47 6977 3258 0.80 1.70 7.4 6.4 10.2 53.5

TEQPEM CSD refcode 0.57 3456 1980 0.86 1.45 17.2 9.2 8.5 53.5

MOF-5 7.8 51.9

From these MOFs, red highlighted MOFs were chosen for attempted synthesize and 

activation 



MOF-5_cooh_2_16_4_basic_opt 
(mail-order)

MOF-5_cooh_2_972_1_basic_opt
(mail-order, TMOF-2)

BOQQAB/MOF-650

Density: 0.70 g/cm3

Pore Volume: 0.68 cm3/g
Gravimetric Surface Area: 3072 m2/g 

Volumetric Surface Area: 2154 m2/cm3

Pore Diameter: 7.8 Å
Void Fraction: 0.68

Density: 0.67 g/cm3

Pore Volume: 0.95 cm3/g
Gravimetric Surface Area: 3038 m2/g 

Volumetric Surface Area: 2037 m2/cm3

Pore Diameter: 6.7 Å
Void Fraction: 0.74

Density: 0.49 g/cm3

Pore Volume: 1.73 cm3/g
Gravimetric Surface Area: 3908 m2/g 

Volumetric Surface Area: 1919 m2/cm3

Pore Diameter: 18.3 Å
Void Fraction: 0.85

Red highlighted MOFs were chosen for attempted synthesize and activation 

TPS High-Capacity MOFs synthesis (2)
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Reviewer-Only Slides
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Data Management Plan 
 
This data management plan (DMP) explains how data generated during work performed for EERE will be 
shared and preserved in accordance with DOE data management regulations. Based on the performance record 
from past DOE awards, the PIs have followed DOE’s policy of prompt publication of sponsored research results 
and have communicated the results at conferences, meetings, and on our web sites.   
1. Data Types and Sources 
As described in the main body of the proposal, this project involves simulations and characterization of 
hydrogen storage materials.  The data to be produced will include information on models, input parameters, 
model predictions, and data collected from experiments.  The project will not involve animal or human subjects’ 
data.  

2. Data Content and Format 
The raw data from the and experimental measurements are typically a series of arrays of two or three 
dimensions.  These data will be visualized, which will yield images (in a common format, such as tiff and jpg), 
and will be analyzed to extract features such as performance trends.  These data will be stored with associated 
metadata containing the model information, input parameters, and date/time of the experiment.  Essential 
metadata will be stored in an electronic form as well as dated and indexed laboratory notebooks.  Modeling and 
data analysis codes are typically written in FORTRAN, C++, MATLAB, and IDL.   
3. Sharing and Preservation 
The analyses of the modeling and experimental data (graphs, tables, equations) are to be published in peer-
reviewed journal articles, conference proceedings, and book chapters. The data used to generate these analyses 
will be contributed as Electronic Supporting Information to each journal publication.  Additional unpublished 
data deemed useful to the community will be made publically available.  Some data will be made available 
online, after formal publication, via the University of Michigan’s Deep Blue Data service 
(https://deepblue.lib.umich.edu/data) or the PIs University web page.  Data will also be made available to 
interested parties upon request, consistent with scientific journal access privileges. If application for intellectual 
property rights is expected based on parts of the data developed in this project, access to the data will be granted 
upon request once provisional patent filings are made, but no longer than one year after filing an invention 
disclosure. 

Data will be stored for at least three years after completion of the project, per NSF rules. Published data will 
also be available in print or electronically from publishers for much longer, subject to their access charges.  
Theses are retained in databases and hard copies in the PI’s office indefinitely.  All electronic data will also be 
stored in laboratory computers and a backup hard drive located in our laboratories.  Original laboratory 
notebooks will be kept by the PI in his office or laboratory.  Upon changes in project personnel, such as student 
graduation, the PI will take over responsibility for the data.   

4.  Protection 
We do not anticipate privacy or security issues with the data generated in this project. More specifically, the 
generated data will not contain any personally identifiable information, nor contain any business confidential 
information. Efforts will be undertaken to ensure that the data has no negative impact on innovation, or on US 
competitiveness. 
5.  Rationale 
The data generated in this project will be of value to scientists conducting research in metal-organic frameworks 
(MOFs), and to engineers exploring the use of MOFs in gas capture and storage applications. This project may 
suggest new MOF designs with improved performance, which could positively impact the efficiency of vehicle 
transportation.  
 


