Development of Magnesium Boride Etherates as Hydrogen Storage Materials

Dr. G. Severa (PI) and Prof. C. M. Jensen (Co-PI)

University of Hawaii at Manoa

DOE Hydrogen and Fuel Cells Program Annual Merit Review

April 29 – May 1, 2019

Project ID # ST138

Overview

Timeline

Project Start Date: 10/01/2016

Project End Date: 02/28/2020

Percent Completion: 60 %

Budget

Total Project Budget: \$1,204,366

➤ Total Recipient Share: \$ 214,436

> Total Federal Share: \$989,930

Total DOE Funds Spent: \$ 419,354.74 as of 03/01/19

Barriers

Barrier	Target
Low System Gravimetric capacity	> 7 wt% H ₂ system
Low System volumetric capacity	> 40 g/L system
Low System fill times	1.5 kg hydrogen/min

Partners

HyMARC Consortium

> SNL: High Pressure Hydrogenations

LLNL: Computational Experiments

> NREL: TPD Studies.

Relevance

Objective: Synthesize and Characterize Modified Magnesium Boride Hydrogen Storage Materials Capable of Meeting DOE 2020 Targets.

Storage Parameter	Units	2020 Target	Ultimate Target
Low System Gravimetric capacity	kg H ₂ /kg system	0.055	0.075
Low System volumetric capacity	kg H ₂ /L system	0.040	0.070
Low System fill times (5 kg)	kg H ₂ /min	1.5	2.0
Min Delivery Pressure	bar	5	3
Operational cycle (1/4 tank to full)	cycles	1500	1500

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22

Relevance: Recent Advances in Mg(BH₄)₂ Research

Recent improvements in magnesium borohydride research.

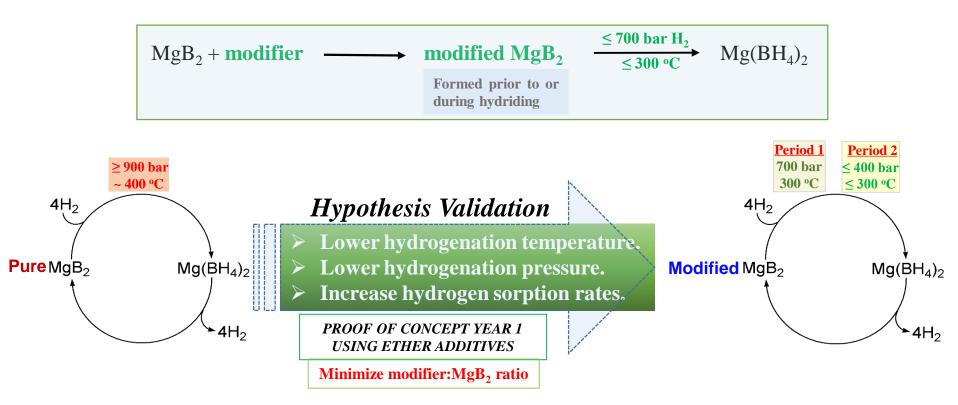
	Hydrogenation		Dehydrogenation		Wt % H ₂		
Dehydrogenation Product	Temp. (°C)	P (bar)	time (h)	Temp. (°C)	time (h)	Theory	Exp.
MgB_2 (HP)	>400	>900	108	530	20	14.8	11.4
MgB ₂ (reactive ball milling/HT-HP)	400	10/400	10/24	390	-	14.8	4
$Mg(B_3H_8)_2/2MgH_2$	250	120	48	250	120	2.7	2.1
$Mg(B_{10}H_{10})_2(THF)_x/4MgH_2$	200	50	2	200	12	4.9	3.8

$Mg(BH_4)_2$ ammoniates

➤Improved kinetics on dehydrogenation even though, NH₃, very stable BN products formed.

Mg(BH₄)₂ and MgB_xH_v(ether)_z

- lower H₂ storage capacity.


Current state-of-the-art:

- \triangleright Better H₂ cycling kinetics (lower pressures and temperatures).
- **Lower gravimetric H2 storage capacity.**

Efforts show plausibility of continuously enhancing kinetics of $Mg(BH_4)_2$ system.

Relevance: Potential for Practical Hydrogen Storage Properties using modified MgB₂

<u>Hypotheses</u>: Coordination or incorporation of additives/modifiers can perturb the MgB_2 structure resulting in a destabilized MgB_2 material with improved hydrogen storage properties.

Towards improving hydrogen storage properties of MgB₂/Mg(BH₄)₂ system.

Approach: Synthesize, Characterize and Hydrogenate Modified MgB₂ Materials

Experimental Approach: Period 2

- **A. Synthesis of modified MgB, materials:** Direct reactions of MgB, with additives.
 - Reactive ball milling, heat treatment and ultra sonication approaches
- **B. Hydrogenation reactions:** UH: ≤ 200 bars, ≤ 200 °C. HyMARC-SNL: ≤ 700 bars and 300 °C.
- **D. Computation Experiments:** HyMARC-LLNL: Ab initio Molecular Dynamic Simulations.
- **C. Characterizations:** FTIR-ATR, TGA-DSC, NMR, TPD.

Milestone	Project Milestones: (03/01/2018 - 08/31/2019)	Quarter	Accomplished (02/28/2019)
1	Characterize modified MgB ₂ by FTIR, NMR, XRD & TGA-DSC.	1	100%
2	Characterize MgB ₂ composite by FTIR, NMR, XRD & TGA-DSC.	2	100%
3	Tested MgB ₂ materials on moderate pressure reactor system.	4	80%
4	Perform 1 round of hydrogenation per quarter: ≤ 700 bar, ≤ 300 °C.	3	95%
	Establish if kinetics of dehydriding of modified Mg boranes are limited by B-H or B-B bond formation or nano-structural effects.	4	50%
6	Demonstrate 3 cycles of reversible hydrogenation of modified MgB ₂ materials to Mg(BH ₄) ₂ at 300 °C and 400 bar.	4	40%

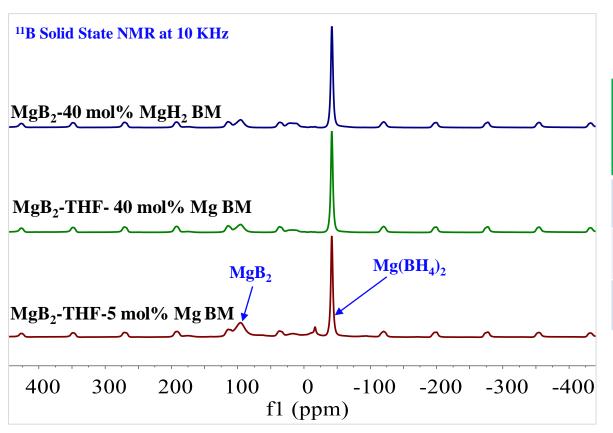
Go/No-Go Decision: Demonstrate reversible hydrogenation of ≥ 8.0 wt % at ≤ 400 bar and ≤ 300 °C and 50% cycling stability through three cycles of an optimal formulation of a modified MgB₂ to Mg(BH₄)₂

Accomplishments: MgB₂ Structure Perturbation by THF

$$MgB_2 + THF$$

Modified MgB₂
[Highly activated product]

T = 0 sec

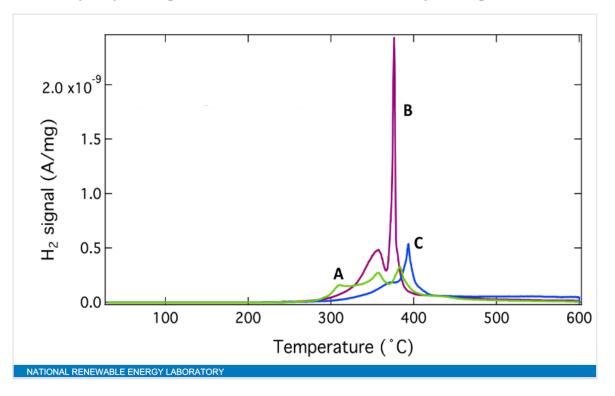

Evidence of MgB₂ modification by THF

 $T = t \sec (t > 0)$

Activated product observed from MgB₂ ball milled with THF

Accomplishments: ¹¹B Solid State NMR of modified MgB₂ 700 bar H₂ and 300 °C

Direct confirmation of bulk hydrogenation of MgB_2 to $Mg(BH_4)_2$ by modified MgB_2

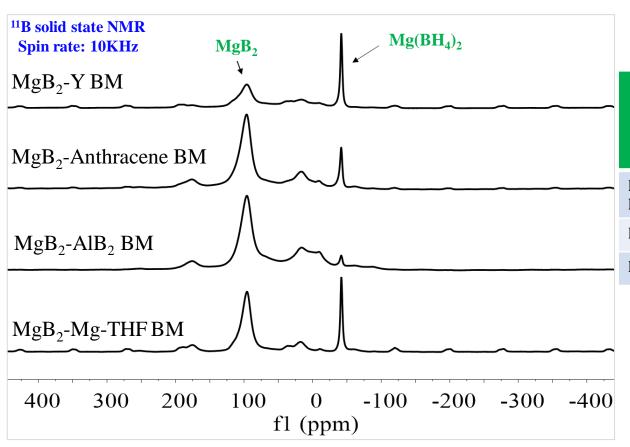


Ball Milled Hydrogenated Samples	11B NMR line fitting analyses % conversion MgB ₂ to Mg(BH ₄) ₂
MgB ₂ -THF- 40 mol% Mg	71
MgB ₂ -THF- 5 mol% Mg	54
${ m MgB}_2$ -40 mol% ${ m MgH}_2$	68

Potential new pathways for improving kinetics of MgB₂ reversible hydrogenation.

Accomplishments: TPD Analyses of modified MgB₂ 700 bar H₂ and 300 °C

Mostly hydrogen evolved from the hydrogenated modified MgB₂ materials

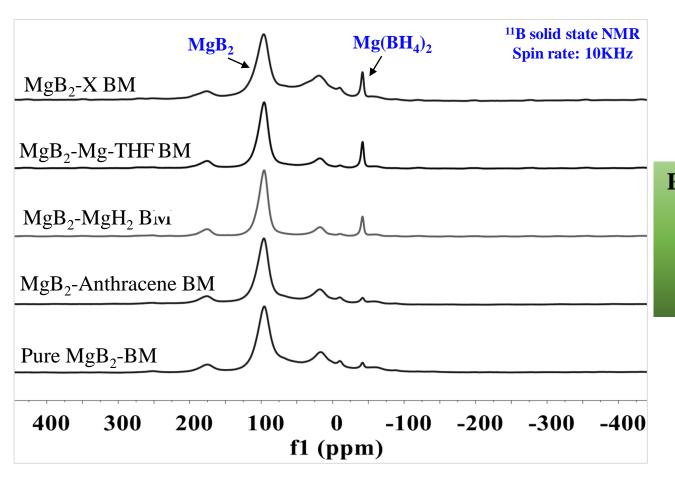

Plausibility of different intermediate steps during dehydrogenation half cycle

TPD studies showing H₂ release from 300 °C and 700 bar hydrogenated samples of: (A) MgB₂-THF-5 mol% Mg (B) MgB₂-THF-40 mol % Mg and (C) MgB₂-40 mol% MgH₂

Negligible amounts of impurities were detected in all samples.

Accomplishments: ¹¹B Solid State NMR of modified MgB₂ 400 bar H₂ and 300 °C

$$MgB_2-10 \text{ mol}\% \text{ X} + H_2 \xrightarrow{400 \text{ bar} \atop 300 \text{ °C}} Magnesium borohydride$$

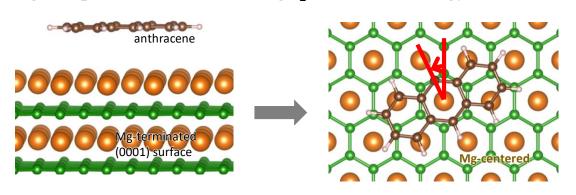

¹¹ B NMR line fitting analyses % conversion MgB ₂ to Mg(BH ₄) ₂
25
28
36

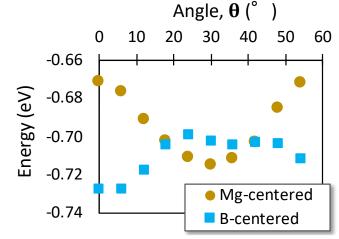
First time hydriding of MgB₂ to Mg(BH₄)₂ at 300 °C! and 400 bars!

Accomplishments: ¹¹B Solid State NMR of modified MgB₂

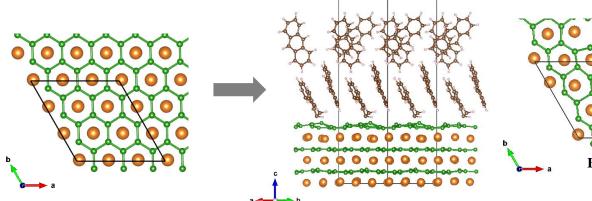
<200 bar H_2 and <250 °C

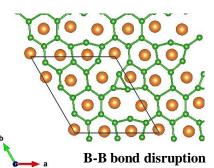
$$MgB_2-10 \text{ mol}\% \text{ X} + H_2 \xrightarrow{<200 \text{ bar} \atop <250 \text{ °C}}$$
 Magnesium borohydride




Plausibility of discovery of additives for improved kinetics of MgB₂ to Mg(BH₄)₂ at moderate conditions

First time hydriding of MgB_2 to $Mg(BH_4)_2$ at <250 °C! and <200 bars!


Accomplishments: Atomistic modeling of Additive-MgB₂ interface


Angle-dependent anthracene-MgB₂ interaction energy

Ab initio molecular dynamics of anthracene-MgB2 interface

Complementary
XAS/XES
Studies
Scheduled

Joint Theory-Experiments in Progress: Investigation of relative reactivity of MgB₂ THF vs. Anthracene.

Accomplishments: Responses to 2018 Reviewers' Comments

- A study demonstrating the dependence of the hydrogenation rate on additive concentration is necessary.
 - Performed hydrogenation of MgB₂-THF with 5 mol% Mg and 40 mol% Mg.
 - Non linear variation in hydrogen uptake with additive concentration observed.
- Cycling of the materials should now be the top priority.
 - Currently in the process of performing cycling studies, with target of 3-5 hydrogen cycles at 400 bar and 300 °C.
- X-ray absorption spectroscopy (XAS) will be tremendously useful in validating the suggested mechanism of B-B bond-breaking.
 - Scheduled to perform XAS on pre and post hydrogenated modified MgB₂ samples in March and June 2019.

Current and Future Work Addresses AMR Reviewer Comments.

Remaining Challenges and Barriers

- Increasing hydrogen uptake to ≥ 8 wt% at 400 bar at 300 °C.
- Showing reversibility of the modified MgB₂ materials.
- Understanding mechanism of hydrogenation enhancement in modified magnesium borides.

- Technology Transfer Activities: Patent filed by University of Hawaii.
 - Severa, G.; Jensen, C. M.; Sugai, C.; Kim, S. (2018) Activated Magnesium Boride Materials for Hydrogen Storage. PCT International patent (PCT/US2018/052306)

Collaborations

Partners	Project Roles
Sandia National Laboratories (HyMARC)	Collaborating with Dr. Stavila and Dr. Allendorf:High pressure hydrogenation experiments.XRD analyses.
Lawrence Livermore National Laboratory (HyMARC)	 Collaborating with Dr. Wood, Dr. Kang, Dr. Baker: ➤ Molecular dynamic simulations of magnesium boride etherates ➤ XES/XAS studies of modified MgB₂.
National Renewable Energy Laboratory (HyMARC)	 Collaborating with Dr. Gennett: Temperature programmed desorption. Mass spec analyses of desorbed gas.

Maximizing HyMARC facilities and Expertise to achieve project objectives.

Proposed Future Work

Synthesis

UH: HNEI and Dept. of Chemistry. Continue to synthesize modified MgB₂ materials using ball milling, ultra sonication and heat treatment approaches.

Hydrogenations

- **SNL:** High pressure hydrogenations
 - Perform hydrogen cycling studies of modified MgB₂ materials.
 - Demonstrate higher gravimetric cycling capacity at ≤ 400 bar and ≤ 300 °C.
- **UH:** Moderate pressure hydrogenations.
 - Perform hydrogenations of modified MgB₂ at \leq 200 bar and \leq 300 °C.

Characterizations

- UH: ¹¹B and *in-situ* ²⁵Mg NMR, FTIR-ATR, TGA, DSC and XRD.
- **HYMARC:** NREL: TPD and LLNL: XES and XAS.

Computation Experiments

HYMARC-LLNL: continue joint theory-experiments studies on effect of additives on hydrogenation of MgB₂.

Any proposed future work is subject to change based on funding levels

Acknowledgements

University of Hawaii Team
Dr. Godwin Severa
Prof. C.M. Jensen
Mr. Cody Sugai
Mr. Stephen Kim

Collaborators	Contribution
Lawrence Livermore National Laboratory	Dr. Wood, Dr. Kang and Dr Baker:➤ Molecular dynamic simulations➤ XES and XAS studies
Sandia National Laboratories	Dr. Stavila and Dr. White: ➤ High pressure hydrogenations.
National Renewable Energy Laboratory	Dr. Gennett, Dr. Leick and Ms. Martinez:Temperature programmed desorption.
University of Geneva	Dr . Hagemann and Ms Gigante. ➤ Raman studies of modified MgB ₂

Project Funding: US. DOE-EERE's Fuel Cell Technologies Office

Summary

- Modified MgB₂ that can be hydrogenated below 700 bar have been synthesized.
- Demonstrated bulk hydriding of modified MgB₂ to Mg(BH₄)₂ at 300 °C and 400 bar.
- Demonstrated hydrogenation of MgB_2 to $Mg(BH_4)_2$ at ≤ 250 °C and ≤ 200 bar, $Mg(BH_4)_2$ yields currently less than 10%, based on ¹¹B NMR line fitting analyses.
- Hydrogenation of MgB_2 to $Mg(BH_4)_2$ at conditions relevant to onboard hydrogen storage appear plausible (< 200 bar and < 200 °C).

Bulk MgB ₂ Hydrogenation Conditions	State of Art [Pure MgB ₂]	FY 17 Results [modified MgB ₂]	FY 18 Results [modified MgB ₂]
Pressure/ bar	950	700	≤ 400
Temperature/ °C	~400	300	≤300
Wt % hydrogen	11 wt %	7-8 wt %	
% Conversion: MgB ₂ to Mg(BH ₄) ₂	75% [Sieverts method: wt% H_2]	71 % [11B solid state NMR line fitting method]	36 % [11B solid state NMR line fitting method]

Research shows plausibility of finding additives capable of vastly improving kinetics of MgB_2 hydrogenation to $Mg(BH_4)_2$

Technical Back-Up Slides

Reviewer-Only Slides