HyMARC: Hydrogen Carriers R&D Activities for Bulk Hydrogen Storage & Transport

Tom Autrey and Mark Bowden *Project ID*: ST204 Annual Merit Review May 21, 2020

What we do at PNNL

At PNNL, we use a top-down integrated approach driven by engineering feasibility and collaboration with HyMARC partners to explore the applications of LOHCs for end uses of varying scales

Liquid Organic H₂ Carriers

City Gate Steel Cement

Scaling End Uses

Far from perfect: Defining an ideal LOHC

Low MP (<–30 °C). High BP (>300 °C): H₂ purification by simple condensation

High hydrogen storage capacity (>56 kg/m³ or >6 wt%)

Low heat of desorption (42–54 kJ/mol-H₂): low dehydrogenation temperature 1 bar P_{H2} (e.g., <200 °C)

Long cycles of selective hydrogenation-dehydrogenation (This area needs a lot more development)

Compatible with existing infrastructure for fuels

Low production costs and good technical availability

Toxicological and eco-toxicological safety during transportation and use

Relevance Moving the bar forward for H₂ carriers

- HyMARC is working to identify off-board scenarios that will benefit from solid and liquid phase carriers of hydrogen.
- Our approach to move the bar forward is to address a defined set of questions for a series of applications
- (i) what is a minimum footprint for each H₂ carrier
- (ii) Are known catalysts capable of providing a sufficient rate of H₂ release;
- (iii) is the power (W/I) and energy (Wh/I) for a given H₂ carrier sufficient to meet the demand.

Engineering feasibility

Technoeconomic analysis

HyMARC is working to identify off-board scenarios that will benefit from solid and liquid phase carriers of hydrogen

- Concepts
 - Identifying use case scenarios
 - ✓ Transport of H₂ from production facility to city gate
 - ✓ Transport of H₂ from city gate to refueling station
 - \checkmark Backup power for data centers
 - ✓ Microgrid energy storage
 - ✓ Passenger ferry, train, bus
 - Identifying materials
 - Identifying approaches
 - \checkmark One way carriers
 - ✓ Round trip carriers
 - \checkmark H₂ carriers without generating hydrogen
- Engineering feasibility
 - minimum footprint for each H₂ carrier
- Technoeconomic analysis
 - Collaboration with LBL
 - Adapting, evolving

Concepts

Engineering feasibility

Technoeconomic analysis

Evolution of HyMARC from CoE to H₂ carriers

- Identify promising use cases (refueling station, city gate, emergency backup, ...)
 - Define power and duration requirements
 - Identify benefits and challenges to put use case into practice
- **Identify promising** *carriers* (formates, formic acid, ethanol)
 - Compare promising carriers to compressed hydrogen
 - Identify benefits and challenges to put *material* into practice
 - Use information from the literature when available, when not available
 - Use theory, experiment, modeling

Utilize Engineering analysis to provides methods of comparison

- Energy: Compare round trip efficiency
- Cost: Estimate operating costs
- Size: "Kristone" Plots
- Benefits: Chemical Compression

Utilize Technoeconomic Analysis

- Operating and capital costs
- Insight into ancillary benefits
- Insight into research areas to reduce cost

Bottom line – develop metrics for a set of achievable use cases

Relevance

H₂ <u>carriers are scalable</u> and have the potential to *store*, *transport* and produce *usable* hydrogen

equivalent volumetric density of H2 carriers relative to comp H₂ gas

Bottom line – ethanol provides a <u>storable</u> H_2 density equivalent > 500 bar compressed H_2 gas

Approach Identifying promising H₂ carriers (liquid phase)

	Example	e: EtOH t
•	 Is the gravimetric/volumetric density greater than 250 bar H₂? what is the volumetric footprint of the system 	35 g
•	What 'use case' are you targeting?How much hydrogen carrier is needed?	Micro
•	What is the enthalpy release on regen?extra needs for heat management?	37 k.
•	 What temperature is required to reach 1 bar H₂ (T = △H/△S)? Minimum required energy input for release of H₂ 	100 9
•	 What is ∆G_(350 C, 5 bar) H₂ release? are extra compressors needed? 	7 kJ/
•	 What is ∆G_(400 C, 200 bar) H₂ uptake? Regeneration possible under moderate conditions? 	-15 k
•	 Are catalysts currently available to yield 1 kg H₂/minute? How much catalyst is needed? What flow rate of carrier is needed? 	TBD
•	 What is the selectivity for H₂ release? How pure is the H₂? What separation processes are required? 	> 99
•	What is the viscosity, melting point, vapor pressure at the release temperature?Are there special needs for pumping or separations?	0.98

o EtOAc H₂/liter

- ogrid (5 MT H_2)
- J/mol H₂
- °C
- $/mol H_2$
- kJ/mol H₂
- %
- cP, -114 C, 53 kPa

Approach Focus on high impact use cases

- Mobile Distributed (Refueling at City Gate, Transportation)
 - Benefits vs. Current Technology: Store stranded power, Environmental Concerns
 - Benefits vs. Gaseous H₂: Reduced volume and tankage cost
- Stationary Back-Up (Power Outage, Seasonal Storage)
 - Benefits vs. Current Technology: Store low cost electricity, Reliability vs. diesel, Size vs. batteries
 - Benefits vs. Gaseous H₂: Less hazardous and reduced volume

			Mobile [Distributed	Power				
use case	footprint	Duration hrs	Power MW	Energy MWh	MT[H2] /day	days	rate Kg H2/min	transport	ancillary considerati
								miles to last	
city gate	large	25	4	100	50	365	35	mile	
ferry	medium	4.2	1.6	6.72	4.2	365	1.92		
long haul	small	20	0.24	0.84	0.06	365	0.73		
			Stationa	ary Back-Up					
	-	Duration	Power		MT[H2]	-	rate Kg		
use case	footprint	hrs	MW	Energy MWh	/day	days	H2/min	transport	ancillary considerati
								transport or	
steel mill	extreme	TBD	146		205	365	143	on site	
								on site	
data center	large	72	20	1440	28	3	19.6	generation	fraction of base line
								on site	
hospital	medium	168	0.586	99	0.83	7	0.57	generation	
								transport or	
microgrid	small	1000	0.065	65	0.112	180	0.078	on site	sell product
								on site	
Relion backup	smaller	TBD	0.0029	0.49	0.004	7	0.0028	generation	

Reduce to Reasonable Number Categorize Applications to

Approach Accelerating progress through collaboration

Engineering Feasibility

Round Trip Efficiency Chemical compression

Collaboration

Leverage and share broad experience through monthly conference calls with Hymarc partners and seedling projects

- DOE HyMARC
- WSU Hongfei, Tom, Kat
- USC Travis, Sam, Tom
- SNL Vitalie, Mark, John, Tom
- NREL Wade, Gennett, Tom, Abhi
- NREL Hawaii Gennett, Steve, Noemi, Jensen, Tom, Ba, Mark
- LBNL Hanna, Katarina, Kriston, Mark, Abhi, Ba
- LBNL Ji, Jinghua, Tom
- LLNL Brandon, Tom, Sam, Kat
- MSU, Nick, Abhi, Mark

Sundo	ау	Monday	Tuesday	Wednesday	Thursday	Friday
Week 1	1	2	3 WSU H2 carriers 1-2 PM	4	5	6
Week 2	8	9 USC H2 carriers 1-2 PM	10 SNL H2 carriers 11-12 PM	11 NREL H2 cariers 11-12 PM	12 NREL/Hawaii 3-4 PM	13 LBNL TEA 11-12 PM
Week 3	15	16	17 LBNL 3-4 PM	18 LLNL Catalysis 11-12 PM	19	20
Week 4	22	23 MSU 1-2 PM	24	25	26 Hawaii H2 carriers 3-4 PM	27

Collaborations

multiply projects involving experts on focused concepts

determining volumetric foot print and minimum rate required for H₂ release for targeted use cases

- A city gate will need to store 50,000 kg/H₂/day (equivalent to 800 MWh) requiring 1,000,000 liters (LOHC) ca. 1000 m^3
 - To generate 50,000 kg H₂/day at a city gate requires a H₂ release rate of 35 kg H_2 /minute (i.e., 1440 minutes/day) from a H_2 carrier
- A refueling station that requires 1,500 kg H_2 /day needs to store 30,000 liters LOHC/day and release H₂ at an average rate of 1 kg H₂/min (i.e., 1440) minutes/day)
 - To generate 1,500 kg H₂/day a day from a H₂ carrier at a refueling station requires a H₂ release rate at an average rate of 1 kg H_2 /min.

Bottom line – H₂ carriers are <u>scalable</u> – to accommodate a wide range of use cases

Concept (defining storable, transportable, usable capacity): Hydrogen Carrier Based on Formate/Bicarbonate Cycle

$NaHCO_2 + H_2O \rightleftharpoons H_2 + NaHCO_3$

 $\Delta_r H^0 = 20.4 \text{ kJ/mol}, \ \Delta_r G^0 = 1.4 \text{ kJ/mol}, \ \Delta_r S^0 = 59.9 \text{ J/mol} \text{ K}$

Advantages:

- High volumetric H₂ density
- Water provides $\frac{1}{2}$ the H₂
- $\Delta G \sim 1$ for H₂ release and uptake
- Reversible at room temperature
- Low toxicity
- Provides >10 bar H_2 pressure Limitations:
- Catalyst decomposition
- Slower reaction kinetics
- Dilution (due to low solubility of $HCOO^{-}/HCO_{3}^{-}$ in solvents)

Bottom line – the formate / bicarbonate cycle operates at moderate temperature and pressure

netric density, g H ₂ /L ution at max.				
ility at 30 °C	Pure			
-	53.4			
31.4	41.7			
19.6	56.5			
29.7	45.4			
21.4ª	40.3			
9.6	11.5			

Concept (un-catalyzed release of H₂):

Hydrogen Carrier Based on Formate Hydrothermal Decomposition

$2\text{HCOONa} + \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{Na}_2\text{CO}_3 + \text{CO}_2$

 $\Delta_r H^0 = 68.3 \text{ kJ/mol}, \ \Delta_r G^0 = 17.15 \text{ kJ/mol},$ $\Delta_r S^0 = 164.8 \text{ J/mol K}$ T1bar = 412 K (140 C)

Advantages:

- High volumetric H₂ density
- Water provides $\frac{1}{2}$ the H₂
- Overcome challenges associated with limited solubility of formate/ bicarbonate
- Provides >10 bar H_2 pressure ٠ Limitations:
- CO₂ byproduct
- Higher temperature reaction

- Pressure sensitivity: Proposed system can deliver high P hydrogen (>50 bar at 350 °C (<30 min) compared to the conventional LOHC (eg. In PDBT systems, to shift eq. from 90% dehydrogenation to 90% hydrogenation, H_2 pressure has to be increased only by a factor of 2 or 3)
- Rehydrogenation: (a) Proposed system: 30-100 °C in the presence of a catalyst. (b) Conventional LOHCs: 100-300 °C in the presence of a catalyst.

Table 2 – En	for the chemical hydrides.				
Storage medium	Enthalpy of dehydrogenation [kWh/kg H ₂]	Typical temperatures for hydrogen release [C]	Boiling point of hydrogenated form [C]	Enthalpy of evaporation (if gas phase during dehydrogenation) [kWh/kg H ₂]	Total heat which must be provided [kWh/kg H ₂]
Methanol	2.3	250	64.7 (100 for water)	4.4 ^a (1.8 for water)	6.7
Ammonia	4.2	>425	33.3	2.1	6.3
Formic acid	4.3	<100	100.8	-	4.3
MCH	9.7	350	101	1.5	11.2
DNEC	7.6	220	>220	-	7.6
PDBT	9.0	300	390	-	9.0

For steam reforming of methanol, one must evaporate both methanol and water. In a real case, a stoichiometric excess of water of approximately 50% is typically used; this excess ratio is used to generate the value above [163]

Int. J. Hydrog. Energy, 2019, 44, 11901-11919 Energy Environ. Sci., 2017, 10, 1652-1659 Green Chem., 2010, 12, 2214-2224

Bottom line – non-catalytic hydrothermal formate decomposition temperature is comparable to the conventional LOHCs that use noble metal catalysts (Ru, Pt etc) to release H₂.

Concept: Dehydrogenative coupling provides a means to modify thermodynamics. Molecular catalyst that enables both H₂ release and uptake can provide an approach for microgrid technology

Bottom line – the EtOH/ EtOAc cycle operates at moderate temperature and pressure

Liquid phase calculation

Accomplishments Concepts: (i) Formation of H₂ carriers without H₂ (ii) Engineering approach to catalyst reactivation)

- Investigated potential for regeneration of H₂ carrier, formate, by electrochemical process
- Screened multiply Pd-supported catalysts (commercially available and from collaborators)
- Confirmed catalyst reactivation by washing with water
- Demonstrated ability to generate 3-4 bar H_2 backpressure (at the formate/bicarbonate equilibrium)

Bottom line – (i) The formate / bicarbonate cycle provides an opportunity to regenerate H₂ carriers without needing a discrete step to make H_2 . (ii) Use double reactor to regenerate catalyst

Approach

Engineering feasibility: Developing Ragone plots of Energy vs Power for multiply H₂ carriers

A data center may need 10 MW Power for 100 hours (1GWh)

The interpolation from Ragone plot for liq. NH_3 PEM FC provides an estimate of the system 'foot print'

Power 10 W/liter (10 MW/10 W/liter = 1,000,000 liters) Energy 1000 Wh/liter (1 GWh/1000 Wh/liter = 1,000,000 liters)

Liq $NH_3 = 0.17$ kg H_2 /liter * 20 kWh/kg $H_2 = 3.4$ kWh/liter $(1 \text{ GWh}/3400 \text{ Wh}/\text{liter NH}_3 = 300,000 \text{ liters of lig NH}_3)$

Power ~ combination of volume of FC and BOP Energy ~ volume of 'fuel' and tank

What does the footprint look like for a: passenger ferry, bus, train, city gate, refueling station, microgrid, ... using formic acid, formate salt, EtOH, methylcyclohexane, ...

Also need to consider a material and system capable of delivering 10 kg H₂/minute for the data center backup

(b) Volumetric density of fuel cell systems with various logistic fuels.

Figure 3 from A review of fuel cell systems for maritime applications. L. van Biert, M. Godjevac, K. Visser, P.V. Aravind. Journal of Power Sources 327 (2016) 345-364

Bottom line – Ragone/Kristone plots provide a means to compare physical footprints for different H₂ carriers for different sets of use cases

TEA of Formate regeneration from Bicarbonate suggests water removal most costly step

> Electrochemistry enables regeneration of H₂ carrier 'without hydrogen'

Bottom line – initial EF and TEA suggests water removal is the expensive step. Need to think about special use case where heat is cheap (nuclear) or develop catalysts that work under more concentrated conditions

Microgrid 5 MT H₂ Annual Storage 5 tanks 8 M NaHCO₂ 300,000 L 11' ID x 22' tall

Preliminary TEA suggest water removal is great expense

Materials are inexpensive. non-flammable and non toxic (KHCO₃ is used as a deicer)

TEA analysis suggests efforts are needed to perform regeneration at higher concentrations or a use case with cheap source of heat, e.g., nuclear reactor

Engineering feasibility optimizing the temperature for H₂ release can provide initial stage of chemical compression

Bottom line – chemical compression can reduce the needs of physical compression.

- \$0.054/kWh electricity
- \$0.02/kWh natural gas

Engineering Analysis using Kristone plot shows footprint of Ethanol/Ethyl Acetate Cycle

from seasonal storage, to data centers to a passenger ferry.

Bottom line – Ragone plots provide insight into the physical footprint for **EtOH for multiply use cases ranging**

Summary of HyMARC accomplishments for H₂ carriers

Concepts

- Dehydrogenative coupling to alcohols (35 g H₂/liter)
 - \checkmark modify ΔH and ΔS to obtain ΔG in range of 4-8 kJ/mol H₂.
 - \checkmark One pot reversible release and uptake of H₂ with a molecular catalyst
 - \checkmark condensed phase thermodynamics of alcohols are substantially different then gas phase thermodynamics
- Formate / bicarbonate cycle (30-50 g H₂/liter)
 - \checkmark Synthesis of H₂ carriers without making H₂ in a discrete step electrochemical regeneration
 - \checkmark Regeneration of formate from bicarbonate under moderate conditions (5 bar H₂, 40 C)

Engineering feasibility

- Ragone plots to determine the volumetric footprint
 - \checkmark EtOH for a microgrid (5 Mt H₂)
 - \checkmark NH₃ and lig H₂ for a Data Center (1 GWh)
- Analysis of chemical compression to enable initial compression step
 - \checkmark Formic acid (xxx bar H₂)
- Compiled list of existing catalysts that can provide >1 kg H₂/min
 - ✓ from formate xx kg Pd
 - ✓ formic acid xx kg Pd

Technoeconomic analysis

- electrochemical regeneration of formate from bicarbonate
 - ✓ removal of water most costly step

Back up slides

Task 3.D.2. Porous liquids as hydrogen carriers

Relevant technical targets

- Volumetric better sorbent packing
- Desorption Time alleviate mass transport issues in monoliths
- Heats of Adsorption
 - **Decreasing** high Q_{ST} when coupled with illumination strategy
- 'Trapping' gas from low Q_{ST} sites and *increasing* desorption temps. Project success
 - 'Fluid' monolith with improved volumetric capacity and fast desorption times
 - 'On demand' H₂ delivery when coupled with illumination strategies

COF Monolith

Enhanced Gas Uptake & Influence on Desorption Temp.

Modeling Porous Liquid Dynamics

can pack well, & can be efficiently illuminated

Tethered groups stabilize colloids against irreversible aggregation, enhance solubility

ic Northwest

Approach:

Synthesize COF colloids so they stay suspended,

> Use Size-excluded solvent w/ no vapor pressure for lubrication/fluidity

Task 3.D.2. Porous liquid Accomplishments

4. Enhanced Gas Uptake Demonstrated for Porous Liquid

3. Colloids Used to Synthesize Monolith

400 m²/g, ~0.5 g/cm³

CO₂ data indicates near 100% of theoretical pores remain open for gas binding

CH₄ data indicates dramatic uptake in gas relative to solvent (>20 fold increase), also dramatic effect on desorption temperature

3f:9 Plasmon interactions for on-demand hydrogen release in hydrogen carriers

Developing a mechanistic understanding

- charge transfer from Au, Mg or nonexcited TiN

surfaces is thermodynamically disfavored.

for Methanol dehydrogenation

Background

- 1. High gravimetric H₂ density. (~12%)
- 2. Low cost
- 3. Easy handleability and transportation
- 4. Being manufactured from a variety of renewable sources

Figure. Methanol decomposition over nickel supported on silica at 250 °C. [1]

Note:

- 1. Noble-metal-based catalysts: high activity, exorbitant price, low abundance.
- 2. Transition-metal-based catalysts: Lower price, low selectivity and low reactivity.

[1] Journal of Molecular Catalysis A: Chemical 152 2000. 157–165.

Zhuolei Zhang, Jeff Urban

Modulation of Electronic Metal-Support Interaction for Catalysis

Ultrasmall Nickel Nanoclusters deposited on defective BN nanosheets as the Catalyst

Figure. Schematic illustration of the formation of defective BN nanosheets and further deposition of Ni nanoclusters. The smaller nanoparticles (~1.5 nm) possess the capability of more localized electronic states for charge transfer. The defects help improve the binding energy of reactants at the surface of Ni nanoclusters, facilitating the catalytic reaction.

Zhuolei Zhang, Jeff Urban

Figure. (a) Hydrogen productivity of Ni/BN nanocomposite with various Ni nanocluster sizes. (b) Temperature-dependent hydrogen productivity of Ni nanoclusters on various substrates. (c) Catalytic performance compared with that of some other catalysts. ALS 🔽 ADVANCED LIGHT SOURCE

H₃OH
etal h ⁻¹)
7.6
5.1
270 °C)
.3
.9
5
.8
.4
1.1

Task 3: Single-Site Catalyst for Efficient Hydrogen Generation with Alcohols

- In direct methanol dehydrogenation, the reaction rate of atomic Pt could reach 12000-14000 mol_{methanol}/mol_{pt}/hour: 40 times that of Pt nanoparticles of 2.5 nm diameter, and more than 800 times that of 7nm Pt NPs.
- Furthermore, the atomic Pt catalyst has a high reaction stability (**120 hours**).

li Su Gahor Somoriai

JACS **141**, 17995 (2019)

Ji Su, Somorjai, Liu, Guo, Prendergast, Klebanoff, Stavila, Allendorf

Reversible Hydrogen Generation/Storage Process Development: with Cyclohexane/Benzene and Single-Sites Catalyst (Pt₁/CeO₂)

- Ji Su and Gabor Somorjai (MSD/LBNL): Catalytic process development
- Mark Allendorf and Vitalie Stavila (SNL): Catalytic materials development
- Yi-Sheng Liu and Jinghua Guo (ALS/LBNL): XAS characterization
- Pragya Verma, David Prendergast (TMF/LNBL): DFT calculations
- Tom Autrey (PNNL): H₂-carriers

Single Pt sites catalyst VS Pt NPs Reaction condition:

1 atm, 350°C, 100 mg catalysts; Gas flow: N₂ 30ml/min.

Cyclohexane Dehydrogenation

Manuscript for Nature Catalysis

Target: produce 1 kg H₂/min from cyclohexane

Catalyst	Reaction conditions	Catalyst Required	Pt lo
		(for 1 kg H ₂ /min)	
Pt ₁ /CeO ₂	Cyclohexane 0.05 ml/min	121 kg	181
(0.15 wt %)	Conversion: 29.7 %		
Pt ₁ /CeO ₂	Cyclohexane 0.02 ml/min	113 kg	169
(0.15 wt %)	Conversion: $\sim 80 \%$		
Pt/Al ₂ O ₃	Cyclohexane 0.05 ml/min	434 kg	217

