Development of Magnesium Boride Etherates as Hydrogen Storage Materials

Dr. G. Severa (PI) and Prof. C. M. Jensen (Co-PI)

University of Hawaii at Manoa

DOE Hydrogen and Fuel Cells Program Annual Merit Review

May 19–21, 2020

Project ID # ST138

Overview

Timeline

Project Start Date: 10/01/2016

Project End Date: 09/30/2020

Percent Completion: 60 %

Budget

Total Project Budget: \$1,204,366

➤ Total Recipient Share: \$ 214,436

Total Federal Share: \$989,930

Total DOE Funds Spent: \$772,936.42 as of 03/31/20

Barriers

Barrier	Target
Low System Gravimetric capacity	> 5.5 wt% H ₂ system
Low System volumetric capacity	> 30 g/L system
Low System fill times	1.9 kg hydrogen/min

Partners

HyMARC Consortium

> **SNL**: High Pressure Hydrogenations.

➤ **LLNL**: Computation and XAS studies.

> NREL: TPD and EPR Studies.

Relevance

Objective: Synthesize and Characterize Modified Magnesium Boride Hydrogen Storage Materials Capable of Meeting DOE Targets.

Storage Parameter	Units	2020 Targets	2025 Targets	Ultimate Target
Low System Gravimetric capacity	kg H ₂ /kg system	0.045	0.055	0.065
Low System volumetric capacity	kg H ₂ /L system	0.030	0.040	0.050
Low System fill times (5.6 kg)	kg H ₂ /min	3	3	3
Min Delivery Pressure	bar	5	5	5
Operational cycle (1/4 tank to full)	cycles	1500	1500	1500

 $DOE\ Technical\ Targets\ for\ Onboard\ Hydrogen\ Storage\ for\ Light-Duty\ Vehicles.\ \underline{https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles}$

Relevance: Recent Advances in Mg(BH₄)₂ Research

Recent improvements in magnesium borohydride research.

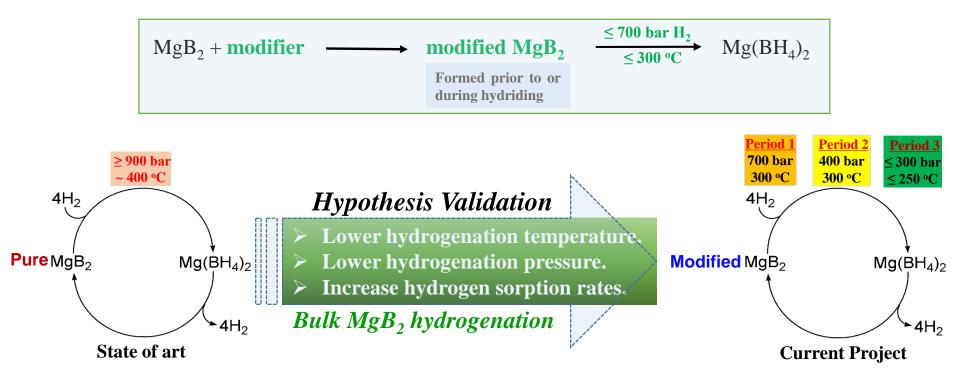
	Hydrogenation			Dehydrogenation		Wt % H ₂	
Dehydrogenation Product	Temp. (°C)	P (bar)	time (h)	Temp. (°C)	time (h)	Theory	Exp.
MgB_2 (HP)	>400	>900	108	530	20	14.8	11.4
MgB ₂ (reactive ball milling/HT-HP)	400	10/400	10/24	390	-	14.8	4
$Mg(B_3H_8)_2/2MgH_2$	250	120	48	250	120	2.7	2.1
$Mg(B_{10}H_{10})_2(THF)_x/4MgH_2$	200	50	2	200	12	4.9	3.8

$Mg(BH_4)_2$ ammoniates

➤Improved kinetics on dehydrogenation even though, NH₃, very stable BN products formed.

Mg(BH₄)₂ and MgB_xH_v(ether)_z

- ► lower H₂ storage capacity.


Current state-of-the-art:

- ▶ Better H₂ cycling kinetics (lower pressures and temperatures).
- **Lower gravimetric H2 storage capacity.**

Efforts show plausibility of continuously enhancing kinetics of Mg(BH₄)₂ system.

Relevance: Potential for Practical Hydrogen Storage Properties using modified MgB₂

<u>Hypotheses</u>: Coordination or incorporation of additives/modifiers can perturb the MgB_2 structure resulting in a destabilized MgB_2 material with improved hydrogen storage properties.

Towards improving hydrogen storage properties of MgB₂/Mg(BH₄)₂ system.

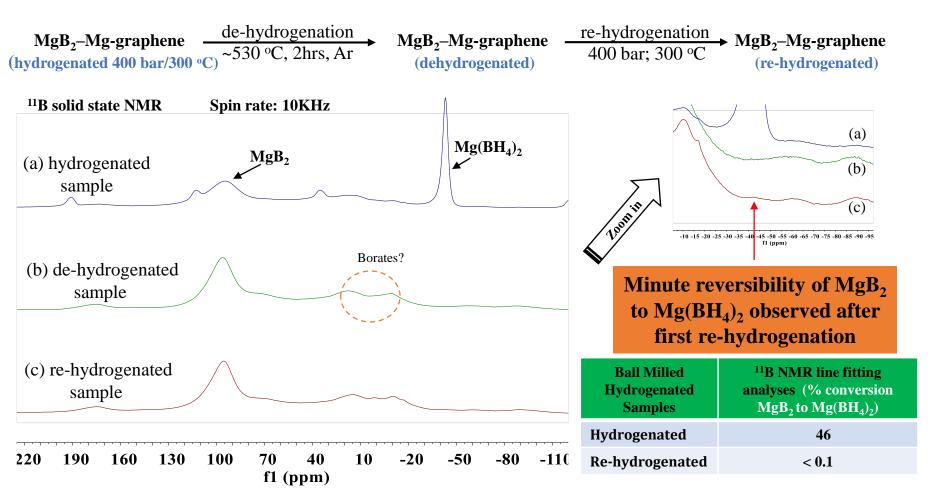
Approach: Synthesize, Characterize and Hydrogenate Modified MgB₂ Materials

Experimental Approach: Period 3

- **A. Synthesis of modified MgB₂ materials:** Direct reactions of MgB₂ with additives and dehydrogenation of Mg(BH₄)₂ in presence of additives. Emphases on ball milling and heat treatment approaches.
- **B. Hydrogenation reactions:** <u>UH</u>: ≤ 200 bars, ≤ 300 °C. <u>HyMARC-SNL</u>: ≤400 bars and ≤300 °C.
- D. Computation Experiments: <u>HyMARC-LLNL</u>: Ab initio Molecular Dynamic Simulations.
- C. Characterizations: TGA, DSC, FT-IR, NMR, HyMARC-PNNL: XRD, HyMARC-NREL: TPD/EPR

Milestone	Project Milestones: (10/01/2019 - 09/31/2020)	Quarter	Accomplished (05/28/2020)
	Establish a correlation of the extent of MgB ₂ modification to hydrogen uptake.	1	70%
•)	Determine the minimal additives content required to enhance bulk MgB ₂ hydrogenation below 200 bar and 300 °C.	2	70%
3	Demonstrate hydrogen cycling by a modified MgB ₂ to Mg(BH ₄) ₂ .	4	30%
	Determination of hydrogen cycling conditions for modified MgB ₂ to achieve maximum H ₂ storage capacity with acceptable kinetics.	4	10%

Period 3 Deliverable: Demonstrate reversible hydrogenation of ≥ 8.0 wt % at ≤ 300 bar and ≤ 250 °C and cycling stability through 5 cycles of an optimal formulation of a modified MgB₂ to Mg(BH₄)₂.

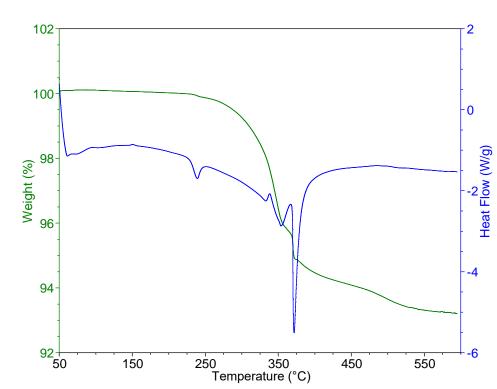


Accomplishments: First hydrogen cycle of modified MgB₂

400 bar H₂ and 300 °C

Cycling study of "MgB₂ + 10mol% Mg-10mol% graphene"

Preliminary studies indicate minute re-hydrogenation of a modified MgB₂ material.


Accomplishments: Optimization of a modified MgB₂ graphene material for improved H₂ uptake

400 bar H₂ and 300 °C

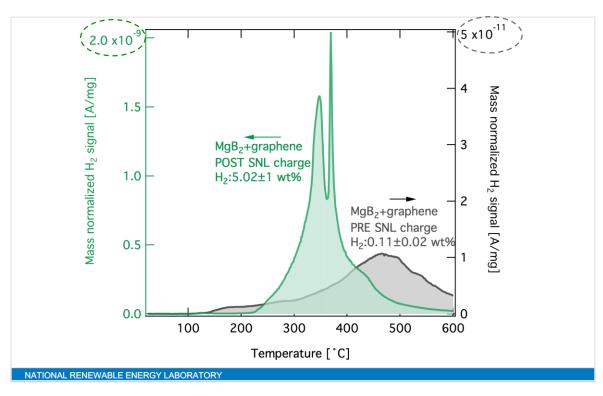
MgB₂ + 10 mol% graphene

Ball milling optimization

Modified MgB₂

TGA-DSC analyses of hydrogenated MgB₂-10 mol% graphene

Ball Milled	TGA
Hydrogenated	mass loss
Sample	(%)
MgB ₂ - 10 mol% graphene	6.8

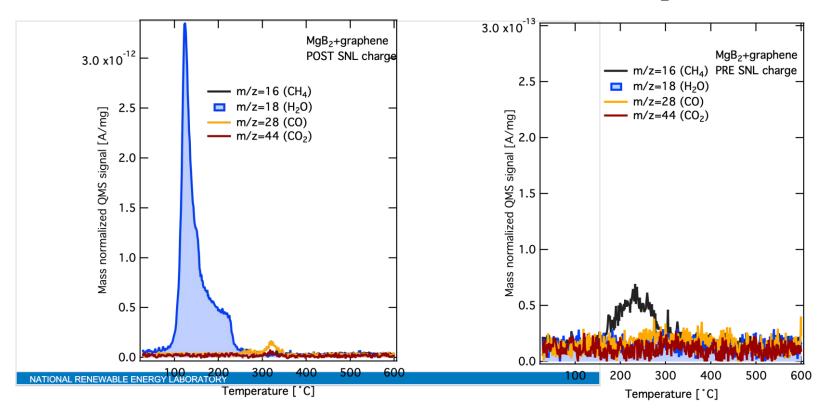

Rate: 5 °C/min under Argon flow

Improved mass loss observed from an optimized modified MgB_2 material hydrogenated at 400 bar and 300 °C.

Accomplishments: TPD Analyses of the modified MgB₂

400 bar H₂ and 300 °C

Confirmation of hydrogen evolution from the hydrogenated modified MgB₂

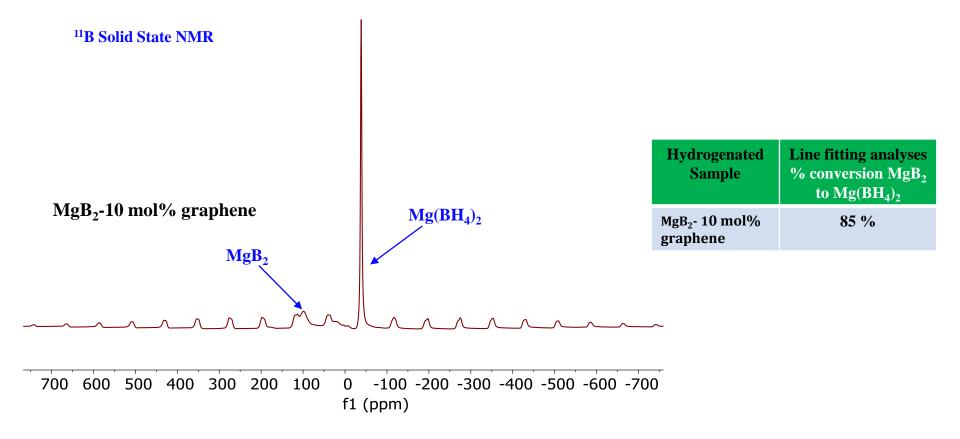

Confirmatory TPD
Analyses indicates
between 4-6 wt%
hydrogen release from
the hydrogenated sample

TPD analyses of hydrogen evolution from a MgB₂ -10 mol% graphene nanoplatelets sample before (PRE) and after (POST) hydrogenation at 400 bar and 300 °C.

Accomplishments: TPD Analyses of the modified MgB₂

400 bar H₂ and 300 °C

Evolved gaseous products from the modified MgB₂ materials

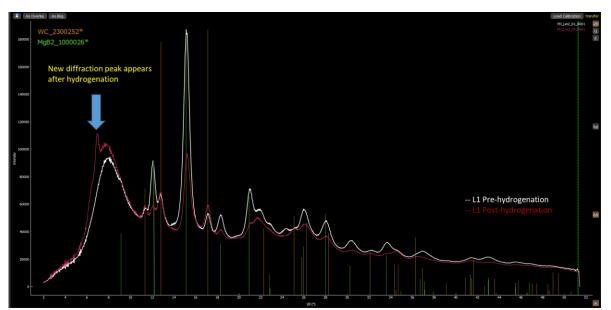

The water impurity is attributed to residual physisorbed H_2O inside the TPD sample vial.

Only trace amounts of graphene or its decomposition products detected.

Accomplishments: ¹¹B Solid State NMR of the optimized MgB₂-graphene material

400 bar H₂ and 300 °C

NMR indicates almost complete conversion of the MgB_2 to $Mg(BH_4)_2$



Minimum impurities of boron species observed in NMR spectrum

Accomplishments: XRD of the optimized MgB₂-graphene material

400 bar H₂ and 300 °C

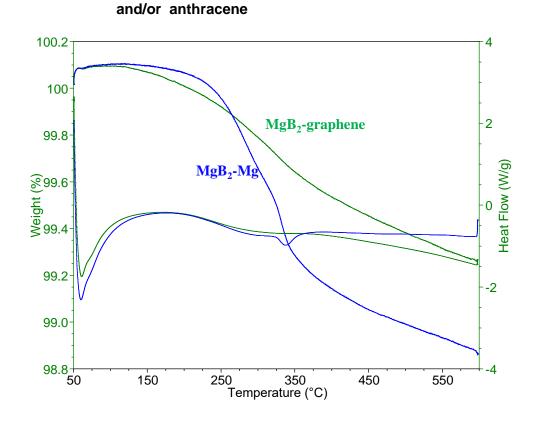
XRD analyses of crystalline phases of boride, borohydride and impurities.

XRD taken in Dera Lab (UH) using single-crystal diffractometer with IuS 3.0 Ag K_{α} microfocus source.

MgB₂ and WC detected in pre-hydrogenated sample.

• WC originates from the ware of grinding balls during milling process.

Large decrease of crystalline phase of MgB₂ observed in hydrogenated material.


• Sharp new diffraction peak is attributed to $Mg(BH_4)_2$ main reflection.

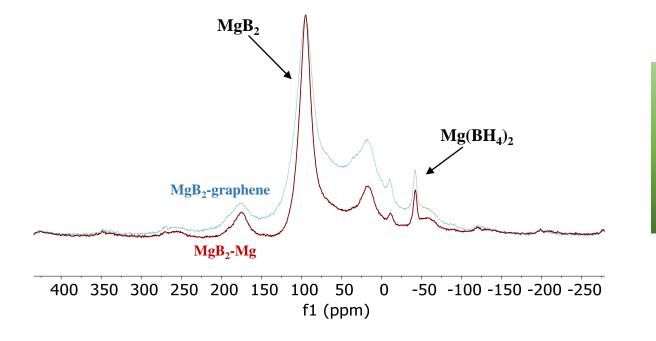
Presence of WC responsible for the unexpected lower wt% H₂ release observed from TPD and TGA analyses.

Accomplishments: Preliminary studies of modified MgB₂ materials under moderate conditions

160 bar H₂ and 250 °C

$$MgB_2 + \leq 10 \text{ mol}\% \text{ X} + H_2 \xrightarrow{\underline{}} Magnesium \text{ borohydride}$$
 X = Mg, graphene, THF

TGA analyses indicates less than 1 wt% hydrogen release


Further optimization of modified MgB₂ materials required to ensure lower temperature and pressure hydrogen uptake.

Accomplishments: Preliminary studies of modified MgB₂ materials under moderate conditions

160 bar H₂ and 250 °C

$$MgB_2 + \le 10 \text{ mol}\% \text{ X} + H_2 \xrightarrow{160 \text{ bar} \atop 250 \text{ °C}} Magnesium borohydride}$$
X = graphene, Mg, THF
and/or anthracene

¹¹B Solid State NMR analyses of hydrogenated modified MgB₂ materials.

Confirmation of Mg(BH₄)₂ formation in modified materials hydrogenated at moderate conditions

Direct confirmation of $Mg(BH_4)_2$ formation at lower pressures and temperatures

Accomplishments: Responses to 2019 Reviewers' Comments

This project was not reviewed last year.

Remaining Challenges and Barriers

- Increasing hydrogen uptake to ≥ 8 wt% at ≤ 300 bar and ≤ 250 °C.
- Showing significant H_2 cycling of a modified MgB_2 to $Mg(BH_4)_2$.
 - Minimize irreversible side products formation during (de)hydrogenation.
- Understanding the process of modifier activation of MgB_2 that enables lower temperature and pressure hydrogenation to $Mg(BH_4)_2$.
- Determining the lower temperature and pressure limits of modifier effects on MgB₂ hydrogenation.

Collaborations

Partners	Project Roles
Sandia National Laboratories (HyMARC)	Collaborating with Dr. Stavila, Dr. Snider, Mr. Davis: High pressure hydrogenations.
Lawrence Livermore National Laboratory (HyMARC)	 Collaborating with Dr. Wood, Dr. Kang, Dr. Baker: Molecular dynamic simulations of modified magnesium borides XAS studies of modified MgB₂.
National Renewable Energy Laboratory (HyMARC)	 Collaborating with Dr. Gennett and Dr. Leick: Temperature programmed desorptions. Mass spec analyses of desorbed gas. EPR studies of modified MgB₂ materials
Pacific Northwest National Laboratory (HyMARC)	Collaborating with Dr. Bowden > XRD studies of modified materials

Continue to maximize HyMARC facilities and expertise to achieve project goals.

Proposed Future Work

Synthesis

UH: HNEI and Dept. of Chemistry. Optimize syntheses of modified MgB₂ materials using ball milling and heat treatment approaches. Emphases on heat treatment approaches for better control of syntheses conditions and products.

Hydrogenations

- Perform hydrogenations of modified MgB₂ at \leq 200 bar and \leq 300 °C at UH.
- Perform hydrogen cycling studies at ≤ 400 bar and ≤ 300 °C at SNL and UH.

Characterizations

- UH: ¹¹B NMR, FTIR-ATR, TGA, DSC.
- HYMARC:
 - NREL: TPD and EPR.
 - <u>LLNL</u>: XAS
 - PNNL: XRD

Any proposed future work is subject to change based on funding levels

Acknowledgements

University of Hawaii Team Hawaii Natural Energy Institute

Dr. Godwin Severa
Dr. Lei Wang
Ms. Colleen Kelly
Dept. of Chemistry
Mr. Stephen Kim
Prof. C.M. Jensen

Collaborators	Contribution
Lawrence Livermore National Laboratory	Dr. Wood, Dr. Kang and Dr Baker:➤ Molecular dynamic simulations➤ XAS studies
Sandia National Laboratories	Dr. Stavila, Dr. Snider, Mr. Davis:High pressure hydrogenations.
National Renewable Energy Laboratory	Dr. Gennett, Dr. Leick and Ms. Martinez:Temperature programmed desorption.EPR studies
Pacific Northwest National Laboratory	Dr. Bowden > XRD studies of modified materials

Project Funding: US. DOE-EERE's Fuel Cell Technologies Office

Summary

- Demonstrated improved hydrogenation of a modified MgB₂ to Mg(BH₄)₂ at 300 °C and 400 bar.
 - TPD analyses indicates about 5wt% H₂ release from the MgB₂-10 mol% graphene material.
- Demonstrated hydrogenation of MgB₂ to Mg(BH₄)₂ at 250 °C and 160 bar.
 - TGA analyses indicates about 1wt% mass loss from the modified MgB₂ materials, suggesting surface hydrogenation.
- Further improvements to the hydrogenation of MgB_2 to $Mg(BH_4)_2$ at conditions relevant for onboard hydrogen storage appear plausible (≤ 160 bar and ≤ 250 °C).

Bulk MgB ₂ Hydrogenation	State of Art [Pure MgB ₂]	Period 1 [modified MgB ₂]	Period 2 [modified MgB ₂]	Period 3 [modified MgB ₂]	Period 3 [modified MgB ₂]
Pressure/bar	950	700	400	400	160
Temperature/ °C	~400	300	300	300	250
Wt % hydrogen	11 wt % (Sieverts)	7-8 wt % (TPD)		4-6 wt% (TPD)	~1 wt% (TGA)
% Conversion: MgB ₂ to Mg(BH ₄) ₂	$\begin{array}{c} 75 \% \\ \text{[Sieverts method:} \\ \text{wt% } \text{H}_2 \text{]} \end{array}$	71 % [11B solid state NMR line fitting method]	46 % [11B solid state NMR line fitting method]	85 % [11B solid state NMR line fitting method]	